SOIL SCREENING SURVEY REPORT FOR PHASE 2 NEW ANIMAL QUARANTINE STATION AT HDOA LARGE ANIMAL HOLDING FACILITY 99-951 HALAWA VALLEY STREET AIEA, ISLAND OF OAHU 96701

MNA PROJECT 3048_2 AHL PROJECT No. 6930.001 DAGS JOB No. 12-27-5713

NOVEMBER 15, 2021

Myounghee Noh & Associates

Environmental Studies and Consulting Services

16-643 Kipimana Street, Suite 12, Keaau, Hawaii, USA 96749 • 808.769.4221 99-1046 Iwaena Street, Suite 210A, Aiea, Hawaii, USA 96701 • 808.484.9214

This report is prepared for:

Architects Hawaii Limited 733 Bishop Street, Suite 3100 Honolulu, Hawaii 96813

SOIL SCREENING SURVEY FOR PHASE 2 NEW ANIMAL QUARANTINE STATION AT HDOA LARGE ANIMAL HOLDING FACILITY 99-951 HALAWA VALLEY STREET AIEA, ISLAND OF OAHU 96701

AHL Project No. 6930.001 DAGS Job No. 12-27-5713 MNA Project 3048_2

November 15, 2021

Jennah Oshiro

Environmental Scientist

Myounghee Noh, Consulting Chemist

Principal

Myounghee Noh & Associates, L.L.C. Environmental Studies and Consulting Services 99-1046 Iwaena Street, Suite 210A, Aiea, HI 96701 Tel (808) 484-9214 www.noh-associates.com

TABLE OF CONTENTS

LIS	ST OF A	ABBREVIATIONS	iv
EX	ECUTI	IVE SUMMARY	V
1.0	INTR	ODUCTION	1
2.0	POTE	ENTIAL SITE CONTAMINATION SOURCES	1
2	.1 Prev	vious Site Assessments	1
		emicals of Potential Concern	
3.0	SAMI	PLING AND ANALYSIS	2
3	.1 Dec	eision Units	2
3	.2 Soil	l Sample Collection	4
3	.3 Bor	rehole Closure, Decontamination, and Investigation-Derived Waste	5
		servation and Transportation	
		poratory MI Sample Processing	
4.0	ANAI	LYTICAL RESULTS	6
4	.1 DU	-1: Building Perimeter of Sheds	6
4	.2 DU	7-2: Parking Area and Driveways	6
		-3: Vegetated Area	
		-4 to 7: Pasture Areas	
5.0		A QUALITY REVIEW	
6.0	CONC	CLUSION AND RECOMMENDATION	10
7.0	LIMI	TATIONS	11
RE	FEREN	NCES	12
TA	BLES		
Tab	ole 1.	Summary of Soil Sampling and Analysis	3
Tab	ole 2.	Summary of Measured Soil Analytes: DU-1	7
Tab	ole 3.	Summary of Measured Soil Analytes: DU-2 to 3	
	ole 4.	Summary of Measured Soil Analytes: DU-4 to 5	
	ole 5.	Summary of Measured Soil Analytes: DU-6 to 7	
	ole 6.	Summary of Data Quality Review for DU-1	
Tab	ole 7.	Summary of Data Quality Review for DU-7	9
ΑP	PENDI	CES	
	endix A		
11	-	Figure 1. Site Location Map	
		Figure 2 Decision Unit Roundary Man	
		Figure 2. Decision Unit Boundary Map Figure 3a. DU-1 Sample Locations	

Architects Hawaii Limited – Soil Screening Survey for New Animal Quarantine Station HDOA Large Animal Holding Facility, 99-951 Halawa Valley Street, Aiea, Oahu

Figure 3c. DU-4 to 7 Sample Locations

Figure 3d. DU-7 Sample Locations

Appendix B Field Notes

Appendix C Soil Analytical Results Tables Appendix D Laboratory Analytical Report

CONTRIBUTORS

Project Manager Jennah Oshiro

Environmental Scientists Bryan Chinaka, Celeste Lim, Jennah Oshiro

Report Writer Jennah Oshiro
Drafter Bryan Chinaka
Technical Editor Bryan Chinaka
Quality Assurance Myounghee Noh

LIST OF ABBREVIATIONS

AQS Animal Quarantine Station

bgs below ground surface

COC Chain-of-Custody

COPC Chemical of Potential Concern

DU Decision Unit

EAL Environmental Action Level

EPA Environmental Protection Agency, United States

ESA Environmental Site Assessment

ft foot/feet

HDOA Hawaii Department of Agriculture

HDOH Hawaii Department of Health

HEER Hazard Evaluation and Emergency Response

HREC Historical Recognized Environmental Condition

IDW Investigation-Derived Waste

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

mg/kg milligrams per kilogram

MI Multi-Incremental

MNA Myounghee Noh & Associates, L.L.C.

MS/MSD Matrix Spike/Matrix Spike Duplicate

PAH Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls

PPE Personal Protective Equipment

RCRA Resource Conservation and Recovery Act

REC Recognized Environmental Condition

SAP Sampling and Analysis Plan

SVOC Semi-Volatile Organic Compounds

TGM Technical Guidance Manual

TPH-DRO/RRO Total Petroleum Hydrocarbons as Diesel/Residual Range Organics

UCL Upper Confidence Limit

EXECUTIVE SUMMARY

Myounghee Noh & Associates, L.L.C., under contract with Architects Hawaii Limited, conducted a soil screening survey for the new Hawaii Department of Agriculture (HDOA) Animal Quarantine Station (AQS), located at the current HDOA Large Animal Holding Facility, 99-951 Halawa Valley Street, Aiea, Hawaii. The objective of the screening survey was to identify the presence of potentially hazardous soil contaminants, and associated risks that may be encountered during soil disturbance and earthwork for the construction of the new AQS.

The project site is located in an area with unknown fill material. Thus, petroleum constituents, heavy metals, and polychlorinated biphenyls (PCB) were included as Chemicals of Potential Concern (COPC). The Large Animal Holding Facility was built prior to 1978, thus, heavy metal such as lead was a COPC for the building areas and the previous application of pesticides was considered a potential historical contamination source for all project areas. Based on this assessment and review of a 2018 Phase I Environmental site Assessment (ESA), the COPCs were identified as the following:

- Total Petroleum Hydrocarbons as Diesel/Residual Range Organics (TPH-DRO/RRO)
- Semi-Volatile Organic Compounds (SVOC)
- Resource Conservation and Recovery Act (RCRA) 8 Metals
- PCB
- Organochlorine pesticides

In August 2021, multi-incremental (MI) soil samples were collected from seven Decision Units (DU) around the current HDOA Large Animal Holding Facility. The following table provides a description of sampling locations.

Decision Unit	Location	Sampling Depths (ft bgs)	Chemicals of Potential Concern	Rationale
1	Building perimeters of the Large Animal Holding Facility	0-0.5 0.5-1		 Potential former use of pesticides Flaking of lead-containing or lead-based paints
2	Paved parking areas and driveways of the project site	0-1 1-2	TPH-DRO/RRO, SVOC Heavy Metals, PCB Pesticides	 Unknown fill material Potential former use of pesticides
3	Vegetated area to the north of the buildings and south of Halawa Valley Street	0-1 1-2	TPH-DRO/RRO, SVOC Heavy Metals, PCB Pesticides	 Unknown fill material Potential former use of pesticides
4	Pasture, north area	0-1 1-2	TPH-DRO/RRO, SVOC Heavy Metals, PCB Pesticides	Unknown fill materialPotential former use of pesticides
5	Pasture, east area	0-1 1-2	TPH-DRO/RRO, SVOC Heavy Metals, PCB Pesticides	Unknown fill materialPotential former use of pesticides
6	Pasture, west area	0-1 1-2	TPH-DRO/RRO, SVOC Heavy Metals, PCB Pesticides	 Unknown fill material Potential former use of pesticides
7	Pasture, south area	0-1	TPH-DRO/RRO, SVOC	Unknown fill material

Decision Unit	Location	Sampling Depths (ft bgs)	Chemicals of Potential Concern	Rationale
		1-2	Heavy Metals, PCB	• Potential former use of pesticides
			Pesticides	•

ft bgs feet below ground surface
PCB Polychlorinated Biphenyls

TPH-DRO/RRO Total Petroleum Hydrocarbons as Diesel/Residual Range Organics

SVOC Semi-Volatile Organic Compounds

The analytical results were compared to the Hawaii Department of Health Tier 1 Environmental Action Levels (EAL) for sites located less than 150 meters from surface water and above a drinking water resource for unrestricted (residential) and restricted (commercial/industrial) land use.

No COPCs were measured exceeding the Tier 1 EALs for unrestricted land use. Measurable levels of heavy metals (arsenic, barium, chromium, and lead), PCB (as Aroclor-1260), and pesticides (technical chlordane) were found, but levels were below the EALs for unrestricted land use. No measurable levels of TPH-DRO/RRO and SVOC were found. A steep vegetated area was located to the south of the parking area (DU-2) was inaccessible to the drill rig and was not sampled. Assume soil in the area has levels of Aroclor-1260, arsenic, barium, chromium, and chlordane below the EALs. Based on the review of previous site assessments and findings of the soil screening survey, MNA recommends the following:

- Soils may be used as backfill in the same area and depths where they are excavated from.
 Excess soils that will be transported offsite for disposal must be characterized to ensure
 compliance with recipient guidelines and requirements. For soil or waste characterization,
 the Contractor must collect representative soil samples (e.g., multi-incremental sampling
 technique).
- For other demolition/construction areas, there are reportable levels of PCB, heavy metals, and pesticides. While the findings were below the EALs for unrestricted land use, earthwork may cause potential exposures to the site workers and nearby facility users via fugitive dust. The Contractor must anticipate hazards and implement engineering controls, such as water misting and wind barriers, to prevent exposures to humans and the environment.
- Erosion control measures shall be implemented and precautions must be taken to mitigate impacts to storm drain systems and/or the nearby surface water, Halawa Stream. Install double best management practices (e.g. silt fence, filter socks) within 75 feet of any opening to Halawa Stream to ensure the stream is protected from pollution or erosion (soil, sediments, or other contaminants).

1.0 INTRODUCTION

Myounghee Noh & Associates, L.L.C. (MNA), under contract with Architects Hawaii Limited, conducted a soil screening survey for Phase 2 of the Animal Quarantine Station (AQS) Relocation Project, Halawa Valley Street, Aiea, Island of Oahu. The project site is an approximate 6-acre portion of Tax Map Key (TMK) (1) 9-9-010:054 (por.). The project includes the construction of a new AQS, including an AQS office, maintenance building, indoor and outdoor kennels, parking, and utility infrastructure. The site is currently a large animal holding facility with sheds, parking area and driveways, and pastures (Appendix A, Figure 1).

In 2018, a Phase I Environmental Site Assessment (ESA) was conducted to identify any *recognized environmental conditions* (*REC*) at the project site. *RECs* were identified at the project site, as well as other environmental concerns. Based on the Phase I ESA findings and coordination with the Hawaii Department of Health (HDOH) Hazard Evaluation and Emergency Response (HEER) Office, MNA developed a Chemicals of Potential Concern (COPCs) list and prepared a Sampling and Analysis Plan (SAP), which was approved by the HDOH HEER Office prior to soil sample collection (Myounghee Noh & Associates, L.L.C., 2021). Soil sampling was conducted to determine if COPCs are present in levels at or above the HDOH Tier 1 Environmental Action Levels (EAL).

2.0 POTENTIAL SITE CONTAMINATION SOURCES

2.1 Previous Site Assessments

In 2018, Louis Berger conducted a Phase I ESA for the project site. The Phase I ESA was for an approximately 35-acre site, encompassing TMK (1) 9-9-010:006 (por.), 046 (por.), 054, 057, 058, and the land area below the H-3 overpass (no TMK). The Phase I ESA revealed the following *RECs* in connection with TMK (1) 9-9-010:054, the current HDOA land area planned for construction of the new AQS.

REC:

• Corroded and leaking drums: Two severely corroded and leaking drums containing a white powder were observed under the elevated H-3 Freeway, located northeast of the proposed AQS project site.

Historical REC (HREC):

• *SPILLS Site*: The site was listed in the SPILLS database for a release of 30 gallons of non-polychlorinated biphenyls (PCB) transformer oil. The final result was State On-Scene Coordinator No Further Action. Records did not indicate the location of the release.

Other environmental concerns:

 No information on the operation and activities conducted by the U.S. Navy at the site from 1942 to 1968 were identified. All chemicals of potential concern (COPC) related to the U.S. Navy's possible activities should be considered. The layout of future facilities should consider any environmental requirements, as well as historical operations and related COPCs.

• Waste piles were observed in several locations throughout the Site, to the southeast of the proposed AQS project site (Louis Berger U.S., 2018).

2.2 Chemicals of Potential Concern

Based on the available previous assessment and record review, the COPCs were identified as petroleum constituents, PCB, organochlorine pesticides, and heavy metals. Soil sampling was conducted for surface (0-1 ft below ground surface [bgs]) and near-surface (1-2 ft bgs) soil, as this soil was most likely to contain COPCs from the historical land use. Proposed COPCs and sampling depths were also provided by the client in the added services scope of work document. The following were identified as COPCs for this project.

- Total Petroleum Hydrocarbons as Diesel and Residual Range Organics (TPH-DRO/RRO) by Environmental Protection Agency (EPA) Method 8015
- Semi-Volatile Organic Compounds (SVOC), including priority 18 Polycyclic Aromatic Hydrocarbons (PAH), by EPA Method 8270C-SIM
- PCB by EPA Method 8082
- Resource Conservation and Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA Method 6010B/7471A.
- Organochlorine Pesticides by EPA Method 8081A, including technical chlordane.

3.0 SAMPLING AND ANALYSIS

On 29 July and 09 August 2021, a geophysical survey was conducted using ground penetration radar at each boring location to screen for subsurface utilities and anomalies prior to drilling and sample collection. Subsurface utilities and anomalies were marked with biodegradable spray paint and boring locations were adjusted accordingly to avoid underground utilities. Additionally, Hawaii One Call was contacted for utility clearances.

3.1 Decision Units

During 23-31 August 2021, soil samples were collected from the seven Decision Units (DU), which were established based on the current land uses and COPCs. A site map depicting the DUs is presented in Appendix A, Figure 2, and the sample locations for each DU are shown in Appendix A, Figure 3a-3d. Table 1 provides DU descriptions and a summary for the soil sampling and analysis. A steep vegetated area was located to the south of the parking area (DU-2) was inaccessible to the drill rig and was not sampled.

Table 1. Summary of Soil Sampling and Analysis

						Ana	lytes (EPA	A Method	d)			
							RCRA 8					
			Sample				Metals	Lead/				
Location:			Type (no. of		TPH-DRO/			Arsenic		Pesticides		
Rationale	Unit	(ft)	increments)	Sample ID	RRO (8015)	(8260)	7274A)	(6010)	(8082)	(8081A)	Notes	
Large Animal Holding Facility sheds (~725 ln ft) 0-2 ft Around existing building perimeters:			MI (75) Primary	3048-DU1-1A				✓		✓		
Unknown fill material Potential pesticides and arsenic around	1	0-0.5	MI (75) Duplicate	3048-DU1-1B				✓		✓	Geophysical survey Manual sampling	
building perimeters from historical application • Potential spalling of lead paints from buildings			MI (75) Triplicate	3048-DU1-1C				✓		✓	manuar sampring	
		0.5-1	MI (75)	3048-DU1-2A				✓		✓		
Large Animal Holding Facility parking area and		0-1	MI (75)	3048-DU2-1A	✓	✓	✓		✓	✓		
driveways (~0.5 acre): • Unknown fill material	2	1-2	MI (75)	3048-DU2-2A	✓	✓	✓					
Vegetated Area (~1 acre)	3	0-1	MI (75)	3048-DU3-1A	✓	✓	✓		✓	✓		
 Unknown fill material 	3	1-2	MI (75)	3048-DU3-2A	✓	✓	✓					
Current Pasture Area - North portion (~0.35 acre):	4	0-1	MI (75)	3048-DU4-1A	✓	✓	✓		✓	✓		
Unknown fill material	7	1-2	MI (75)	3048-DU4-2A	✓	✓	✓					
Current Pasture Area - West portion (~1 acre):	5	0-1	MI (75)	3048-DU5-1A	✓	✓	✓		✓	✓		
Unknown fill material	3	1-2	MI (75)	3048-DU5-2A	✓	✓	✓				Geophysical survey	
Current Pasture Area - East portion (~0.65 acre):	6	0-1	MI (75)	3048-DU6-1A	✓	✓	✓		✓	✓	Drill rig	
 Unknown fill material 	U	1-2	MI (75)	3048-DU6-2A	✓	✓	✓					
			MI (75) Primary	3048-DU7-1A	✓	✓	✓		✓	✓		
Current Pasture Area - South portion (~1 acre): • Unknown fill material	7	0-1	MI (75) Duplicate	3048-DU7-1B	✓	✓	√		✓	✓		
• Onknown iii materiai			MI (75) Triplicate	3048-DU7-1C	✓	√	√		✓	✓		
		1-2	MI (75)	3048-DU7-2A	✓	✓	✓					

Acronyms and Abbreviations:

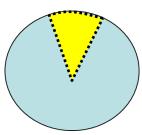
ft bgs feet below ground surface

MI Multi-Incremental

PCB Polychlorinated Biphenyls

RCRA Resource Conservation and Recovery Act

SVOC Semi-Volatile Organic Compounds


TPH-DRO/RRO Total Petroleum Hydrocarbons as Diesel and Residual Range Organics

3.2 Soil Sample Collection

Samples were collected using either a hand-held drill equipped with an auger attachment, or a direct-push drill rig, depending on the sampling depth and the DUs. Soil samples for analysis of non-volatile compounds were shipped to Enthalpy Analytical laboratory, Berkeley, California, via overnight express. Field notes are provided in Appendix B.

Entire cores were collected from DU-1, which were collected using a hand-held drill equipped with an auger attachment and a 5-gallon decontaminated sampling bucket. The auger was advanced to the predetermined sampling depth, and the soil spoils were captured in the 5-gallon bucket. Soil spoils were then transferred into a one-gallon plastic sealable bag(s) then sealed, labeled, and placed in a chilled insulated chest.

A core wedge sample technique was used for the core samples collected with a drill rig in DU-2 to 7. Once the plastic liner containing the cored soil was placed onto the sampling table, a continuous wedge from the entire length of the core (0-1 ft bgs) was collected as the sample increment. For example, the sample 3048-DU2-1A had a continuous core wedge between 0-1 ft bgs collected from all 75 borings, to generate one bulk MI sample. A conservative sample mass of approximately 20 gram of soil for all DUs (75 increments per MI sample) was collected per boring,

Core Wedge Sampling Technique

homogenized in the field per sampling depth to create a bulk MI sample of at least 1.5 kilograms (e.g., 1,500 grams = 20 grams/boring x 75 borings), and provided to the analytical laboratory for analysis. The samples were transferred into a 1-gallon plastic sealable bag(s) then sealed, labeled, and placed in a chilled insulated chest.

The samples were submitted to Enthalpy Analytical laboratory (refer to Section 3.5 for the details). Enthalpy Analytical laboratory processed samples using the MI procedure for all samples which included drying, sieving, and sub-sampling prior to weighting, digestion, and analysis, as indicated in Section 3.4.

A set of triplicate samples were collected from DU-1 (0-0.5 ft bgs) and DU-7 (0-1 ft bgs) of surface soil at predetermined, independent locations. The following sampling protocol was used to collect the primary, duplicate, and triplicate samples.

- Step 1: Collect primary incremental soil samples (3048-DU1-1A).
- Step 2: Collect duplicate incremental soil samples approximately 0.5 ft west (3048-DU1-1B) of the primary increment locations (separate borings from primary).
- Step 3: Collect triplicate incremental soil samples approximate 0.5 ft east (3048-DU1-1C) of the primary increment locations (separate borings from primary and duplicate).

Field notes are provided in Appendix B.

3.3 Borehole Closure, Decontamination, and Investigation-Derived Waste

Upon completion of soil sampling, boreholes were closed by filling any remaining soil spoils and topped with hydrated bentonite to ground surface, or for paved areas, soil spoils to 0.5 ft bgs then topped with cold patch.

Decontamination requirements were reduced by using disposable tools and disposable core sleeves. Sampling equipment requiring decontamination was the drill rig sample core, drill auger bit, and small sampling tools (e.g., bucket, trowels). In between DU sampling, the sampling tools were decontaminated as follows: (1) wash with a non-phosphate detergent Liquinox® and potable water solution; (2) rinse with potable water; and (3) rinse with distilled water.

Investigation-derived waste (IDW) included disposable personal protective equipment (PPE) and disposable plastic sample liners. Approximately 10 trash bags of PPE and plastic sample liners were generated and disposed of in a municipal waste dumpster.

3.4 Preservation and Transportation

All samples were labeled and recorded on a chain-of-custody (COC) document. Chilled samples were packed in a cooler with frozen blue ice for shipping. The samples were shipped to Enthalpy Analytical laboratory, Berkeley, California, via overnight express.

3.5 Laboratory MI Sample Processing

The MI soil samples were processed by Enthalpy Analytical laboratory, using an incremental subsampling procedure (Lab. SOP No. CS 2.4), as follows:

- 1. Empty the entire field sample into a clean, stainless steel sheet pan. Remove extraneous materials such as twigs, large stones, etc., then distribute the sample across the pan to a depth of ½ to ½ inches.
- 2. Place the pan in a drying rack. Dry at room temperature until the sample is visibly dry. This process takes anywhere from overnight to a week, depending on the material.
- 3. After the sample is dry and free-flowing, sieve the entire remaining sample through a 2-millimeter sieve. Place the sieve into another clean stainless steel pan and pour some of the sample into the sieve. Shake to allow the smaller material to pass through the sieve. Aggregates are considered part of the sample and are broken up to pass through the sieve.
- 4. Redistribute the sieved sample across the pan to a uniform depth of ½ to ½ inch.
- 5. Use a small spatula or scoop with a flat bottom and rectangular shape to ensure a representative distribution of particle size. Incrementally sample the spread-out soil using a random grid pattern by collecting 30 increments to approximately 1 gram sub-sample each for a 30-gram sample.
- 6. Record the final weight and proceed to the applicable extraction or digestion procedure.

4.0 ANALYTICAL RESULTS

The analytical results for contaminants were compared to the Hawaii Department of Health (HDOH) Tier 1 Environmental Action Levels (EAL) above a drinking water resource and located less than 150 meters from surface water for unrestricted (residential) and restricted (commercial/industrial) land uses (State of Hawaii Department of Health, rev. Fall 2017). Tables 2 through 5 provide summaries for the measured analytes. Summaries of data will all COPCs are included in Appendix C. The laboratory analytical reports are provided in Appendix D.

4.1 DU-1: Building Perimeter of Sheds

MI soil samples were collected from two sampling depths, 0-0.5 ft and 0.5-1 ft bgs, using a handheld drill with auger attachment. For each MI sample, 75 increments were collected around the buildings' perimeters, from the building foundation to 2 feet out from the foundation. For the sample collected at 0-0.5 ft bgs, duplicate and triplicate samples were collected. There were no indications of contamination such as discolored/stained soils or odors.

Reportable levels of arsenic were measured ranging from 1.1 to 1.7 milligrams per kilogram (mg/kg), below the Tier 1 EAL of 24 mg/kg for unrestricted land use. Lead was measured in all samples ranging from 7.9 to 9.8 mg/kg, below the EAL of 200 mg/kg for unrestricted land use.

No measurable levels of organochlorine pesticides were found in any of the MI soil samples (Tables 2).

4.2 DU-2: Parking Area and Driveways

MI soil samples were collected from two sampling depths, 0-1 ft and 1-2 ft bgs, using a direct-push drill rig. For each MI sample, 75 increments were collected from each sampling depth. There were no indications of contamination such as discolored/stained soils or odors.

Reportable levels of arsenic, barium, chromium, and lead were measured in the soil samples, below the EALs for unrestricted land use. No measurable levels of TPH-DRO/RRO, SVOC, PCB, and organochlorine pesticides were found in any of the MI soil samples (Table 3).

4.3 DU-3: Vegetated Area

MI soil samples were collected from two sampling depths, 0-1 ft and 1-2 ft bgs, using a direct-push drill rig. For each MI sample, 75 increments were collected from each sampling depth. There were no indications of contamination such as discolored/stained soils or odors observed.

Reportable levels of arsenic, barium, chromium, and lead were measured in the soil samples, below the EALs for unrestricted land use. No measurable levels of TPH-DRO/RRO, SVOC, PCB, and organochlorine pesticides were found in any of the MI soil samples (Table 3).

Table 2. Summary of Measured Soil Analytes: DU-1

		Analytical Resu	Tier 1 Environmental Action Level (mg/kg)			
Sample ID (3048-)/ Depth Analytes		DU1-1B 0-0.5 ft bgs Duplicate	DU1-1C 0-0.5 ft bgs Triplicate	DU1-2A 0.5-1 ft bgs	Unrestricted	Restricted
		Metals (F	EPA 6010B)			
Arsenic	1.3	1.7	1.4	1.1	24	95
Lead	8.6	8.4	9.8	7.9	200	800

Table 3. Summary of Measured Soil Analytes: DU-2 to 3

Tubic or Summa	table 5. Summary of Measurea Son Mary test De 2 to 5											
		Analytical Res		Tier 1 Environmental								
Decision Unit	DU	-2	DU	J -3	Screening Level (mg/kg)							
Sample ID (3048-)/	DU2-1A	DU2-2A	DU3-1A	DU3-2A	Unrestricted	Restricted						
Analytes Depth	0-1 ft bgs	1-2 ft bgs	0-1 ft bgs	1-2 ft bgs	Unrestricted	Restricted						
		Metals (EPA 6010B)									
Arsenic	5.9	ND (0.50)	2.4	2.8	24	95						
Barium	50	82	65	95	1,000	2,500						
Chromium	76	120	170	140	1,100	1,100						
Lead	2.5	3.5	10	13	200	800						

Table 4. Summary of Measured Soil Analytes: DU-4 to 5

Table 4. Summary of Measured Son Analytes. DO-4 to 3												
		Analytical Res	Tier 1 Environmental									
Decision Unit	DU	[-4	DU-	-5	Screening Level (mg/kg)							
Sample ID (3048-)/	DU4-1A	DU4-2A	DU5-1A	DU5-2A	Unrestricted	Restricted						
Analytes Depth	0-1 ft bgs	1-2 ft bgs	0-1 ft bgs	1-2 ft bgs	Unrestricted	Restricted						
Aroclor-1260	ND (0.083)	ND (0.083)	ND (0.083)	0.13	17	23						
		Metals (EPA 6010B)									
Arsenic	4.7	3.6	2.2	5.5	24	95						
Barium	110	110	64	140	1,000	2,500						
Chromium	200	180	170	170	1,100	1,100						
Lead	15	12	11	20	200	800						

Table 5. Summary of Measured Soil Analytes: DU-6 to 7

Table 5. Summary of Measured Soil Analytes: DU-6 to /											
			Analytical	Results (mg/l	kg)		Tier 1 Environmental				
	DU-6			DU	Screening Level (mg/kg)						
Decision Unit Sample ID (3048-)/ Analytes Depth	DU6-1A 0-1 ft hos	DU6-2A 1-2 ft bgs	DU7-1A 0-0.5 ft bgs Primary	DU7-1B 0-0.5 ft bgs Duplicate	DU7-1C 0-0.5 ft bgs Triplicate	DU7-2A 0.5-1 ft bgs	Un Restricted	Restricted			
Polychlorinated Biphenyls (EPA 8082)											
Aroclor-1260	0.11	0.15	ND (0.083)	0.21	ND (0.081)	0.32	1.2	8.6			
			Metals	(EPA 6010E	3)						
Arsenic	3.1	5.8	2.2	3.8	3.8	5.9	24	95			
Barium	81	110	86	100	96	160	1,000	2,500			
Chromium	200	160	170	200	200	180	1,100	1,100			
Lead	14	16	13	13	15	41	200	800			
	Organochlorine Pesticides (EPA 8081A)										
Chlordane (technical)	ND (0.16)	ND (0.16)	0.28	ND (0.18)	0.34	ND (0.16)	174	23 ⁴			

Criteria: Hawaii Department of Health Tier 1 Environmental Action Levels with unrestricted (residential) and restricted (commercial/industrial) land uses above a drinking water resource and located less than 150 meters from surface water (State of Hawaii Department of Health, rev. Fall 2017).

Abbreviations/Acronyms:

ft bgs feet below ground surface mg/kg milligrams per kilogram

ID identifier ND (00) not detected (laboratory reporting limit)

4.4 DU-4 to 7: Pasture Areas

MI soil samples were collected from two sampling depths, 0-1 ft and 1-2 ft bgs, using a direct-push drill rig. For each MI sample, 75 increments were collected from each sampling depth. A triplicate sample set was collected from DU-7 at 0-1 ft bgs. Although there were no indications of contamination observed (e.g., discolored/stained soils or odors), various fill materials, including concrete, gravel, coral, and brick, were visible in the 0-2 ft bgs soil cores.

Reportable levels of arsenic, barium, chromium, and lead were measured in the soil samples, below the EALs for unrestricted land use. Aroclor-1260 was measured in DU-5 to 7, ranging from 0.11-0.32 mg/kg, below the EAL of 1.2 for total PCB. Chlordane was measured at 0.24 and 0.34 mg/kg in two of the triplicates soil samples collected from DU-7 at 0-1 ft bgs, below the EAL of 17 mg/kg for unrestricted land use. No measurable levels of TPH-DRO/RRO and SVOC were found in any of the MI soil samples (Tables 4 and 5).

5.0 DATA QUALITY REVIEW

MNA conducted an analytical data quality review to determine the usability of the data generated by performing a data check for sample preservation methods, technical sample holding times, method blanks, laboratory control sample/laboratory control sample duplicate (LCS/LCSD), matrix spike/matrix spike duplicate (MS/MSD), and surrogate recoveries. All samples were labeled and recorded in a COC document. The LCS/LCSD, MS/MSD, and surrogate recoveries were within the laboratory acceptable ranges. Technical holding times for all analytes were met.

All COPC reporting limits were below the Tier 1 EALs for unrestricted land use, with the exception of various SVOCs. Sample 3048-DU2-1A was diluted about 200 times due to the dark color of the sample extracts, resulting in a higher reporting limit. SVOCs with reporting limits below the EALs did not have measurable levels of SVOCs. Additionally, no other COPCs were measured in these samples above the EALs; therefore, it is unlikely that SVOCs are present in soil samples above the EALs for unrestricted land use.

Field performance was reviewed by comparing the results of triplicate MI samples to support the reproducibility of the sampling technique and analytical practice and representativeness of the samples. Average, standard deviation, and relative standard deviation (RSD) between the triplicate samples were evaluated when analytes were detected above the reporting limits. If the RSD between field triplicate samples is 35% or less, the total error is considered within a reasonable range for precision and reproducibility for field sampling activities. The RSD was calculated using the following equation.

$$RSD \ (\%) = \frac{100s}{\bar{r}}$$

Where: \bar{x} = Average, s = Standard deviation

The upper confidence level (UCL) of the average was calculated using the Chebyshev method for comparison to the EALs. The UCL was calculated using the following equation.

Architects Hawaii Limited – Soil Screening Survey for New Animal Quarantine Station HDOA Large Animal Holding Facility, 99-951 Halawa Valley Street, Aiea, Oahu

95%
$$UCL = average + (\sqrt{\frac{1}{\alpha}} - 1 \times \frac{SD}{\sqrt{r}})$$

Where: SD = Standard deviation; r = number of replicate samples; $\alpha =$ acceptable level of potential decision error (0.05 for a 95% UCL); $t = (1-\alpha)^{th}$ quantile of the Student's-t distribution with (r-1) degrees of freedom

A set of triplicate MI sample was collected from DU-1 at 0-0.5 ft bgs and DU-7 at 0-1 ft bgs. The primary, duplicate, and triplicate MI samples were collected at independent locations, with separate samples collected in the same method as the primary sample. The data comparison between triplicate samples is presented in Tables 6 and 7. If the RSD between field triplicate samples is 35% or less, the total error is considered within a reasonable range for precision and reproducibility for field sampling activities. The RSD for the measured analytes, arsenic, barium, chromium, and lead, ranged from 8% to 28%, below the 35% agreement, indicating acceptable precision.

Table 6. Summary of Data Quality Review for DU-1

		Analy	Field Per	Tier 1 EAL (mg/kg)				
	Sample ID	3048-DU1-1A	3048-DU1-1B	3048-DU1-1C	Average	Standard	RSD	
Analytes	Depth	Primary	Duplicate	Triplicate	(mg/kg)	Deviation	(%)	Unrestricted
			Metal	s (EPA 6010B)				
Arsenic		1.3	1.7	1.4	1.5	0.2	14%	24
Lead		19	12	14	15	4	24%	200

Table 7. Summary of Data Quality Review for DU-7

		Analy	tical Results (n	ng/kg)	Field Per	Tier 1 EAL (mg/kg)					
S	Sample ID	3048-DU7-1A	3048-DU7-1B	3048-DU7-1C	Average	Standard	RSD				
Analytes	Depth	Primary	Duplicate	Triplicate	(mg/kg)	Deviation	(%)	Unrestricted			
	Metals (EPA 6010B)										
Arsenic		2.2	3.8	3.8	3.3	0.9	28%	24			
Barium		86	100	96	94.0	7.2	8%	1,000			
Chromium		170	200	200	190.0	17.3	9%	1,100			
Lead		13	13	15	13.7	1.2	8%	200			

<u>Criteria:</u> Hawaii Department of Health Tier 1 Environmental Action Levels with unrestricted (residential) land uses above a drinking water resource and less than 150 meters from surface water (State of Hawaii Department of Health, rev. Fall 2017).

Abbreviations/Acronyms:

IDidentifiermg/kgmilligrams per kilogramft bgs feet below ground surfaceRSD relative standard deviation

6.0 CONCLUSION AND RECOMMENDATION

The objective of the screening survey was to identify the presence of potentially hazardous soil contaminants and associated risks that may be encountered during earthwork and construction.

In August 2021, MNA conducted a soil sampling at the HDOA Large Animal Holding Facility, which is the proposed site for the new AQS. Based on review of previous environmental assessments, lead paints on buildings, potential former pesticide use, and unknown origin of fill material, the soil COPCs were identified as TPH-DRO/RRO, SVOC, PCB, RCRA 8 Metals, and organochlorine pesticides. The analytical results were compared to the HDOH EAL for sites located within 150 meter from surface water and above a drinking water resource for unrestricted (i.e., residential) and restricted (i.e., commercial/industrial) land use.

No COPCs were measured exceeding the Tier 1 EALs for unrestricted land use. Measurable levels of heavy metals (arsenic, barium, chromium, and lead), PCB (as Aroclor-1260), and pesticides (technical chlordane) were found, but levels were below the EALs for unrestricted land use. No measurable levels of TPH-DRO/RRO and SVOC were found.

A steep vegetated area was located to the south of the parking area (DU-2) was inaccessible to the drill rig and was not sampled. Assume soil in the area has levels of Aroclor-1260, arsenic, barium, chromium, and chlordane below the EALs,

RECOMMENDATIONS

Based on the review of previous site investigations and findings of the screening survey, MNA recommends the following:

- Soils may be used as backfill in the same area and depths where they are excavated from if they meet the geotechnical criteria. Excess soils that will be transported offsite for disposal must be characterized to ensure compliance with recipient guidelines and requirements. For soil or waste characterization, the Contractor must collect representative soil samples (e.g., multi-incremental sampling technique).
- For other demolition/construction areas, there are reportable levels of PCB, heavy metals, and pesticides. While the findings were below the EALs for unrestricted land use, earthwork may cause potential exposures to the site workers and nearby facility users via fugitive dust. The Contractor must anticipate hazards and implement engineering controls, such as water misting and wind barriers, to prevent exposures to humans and the environment.
- The Contractor must conduct excavation monitoring for signs of contamination or anomalies, such as discolored/stained soil or odors. The Contractor must provide hazard communication for the workers prior to any earthwork.
- Erosion control measures shall be implemented, and precautions must be taken to avoid impacts to storm drain systems and/or nearby body of water.

- The use of Best Management Practices, such as dust control and erosion control, must be implemented to minimize exposure of workers and other facility users to these soils and to prevent surface runoff to the marine environment.
- Worker protection from silica exposures is enforced by OSHA. All appropriate engineering controls must be implemented and PPE may be considered as added protection.

7.0 LIMITATIONS

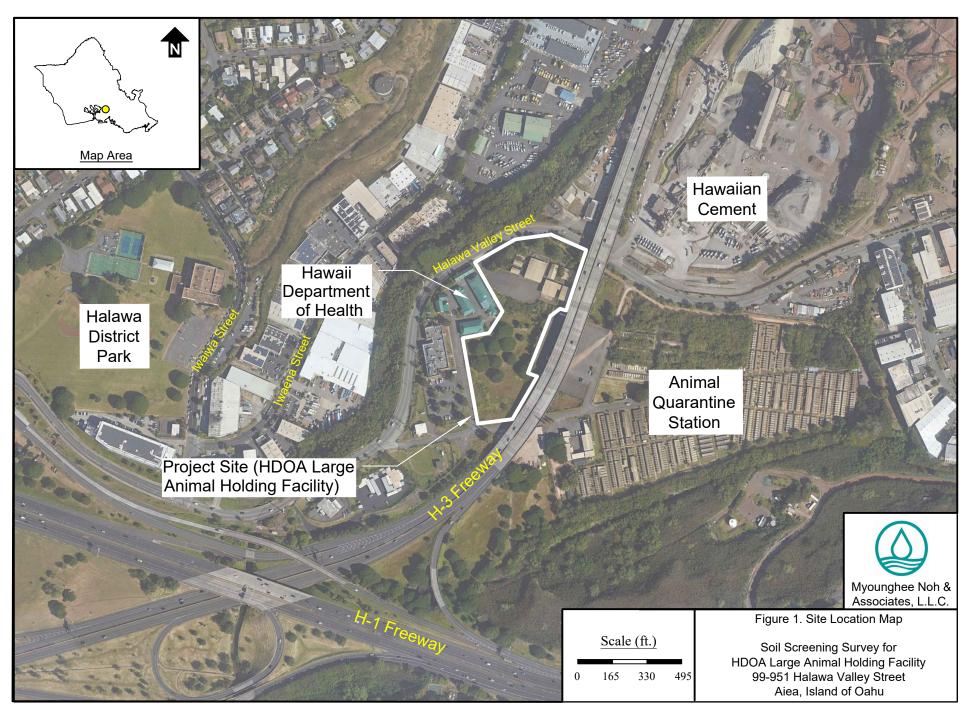
The information provided in this report is for the Contractor's information and is limited to soil conditions at the specific time, sample locations, and depths. The Contractor must perform due diligence as required for the earthwork and construction and conduct work in accordance with all applicable federal, state, and local regulations and procedures.

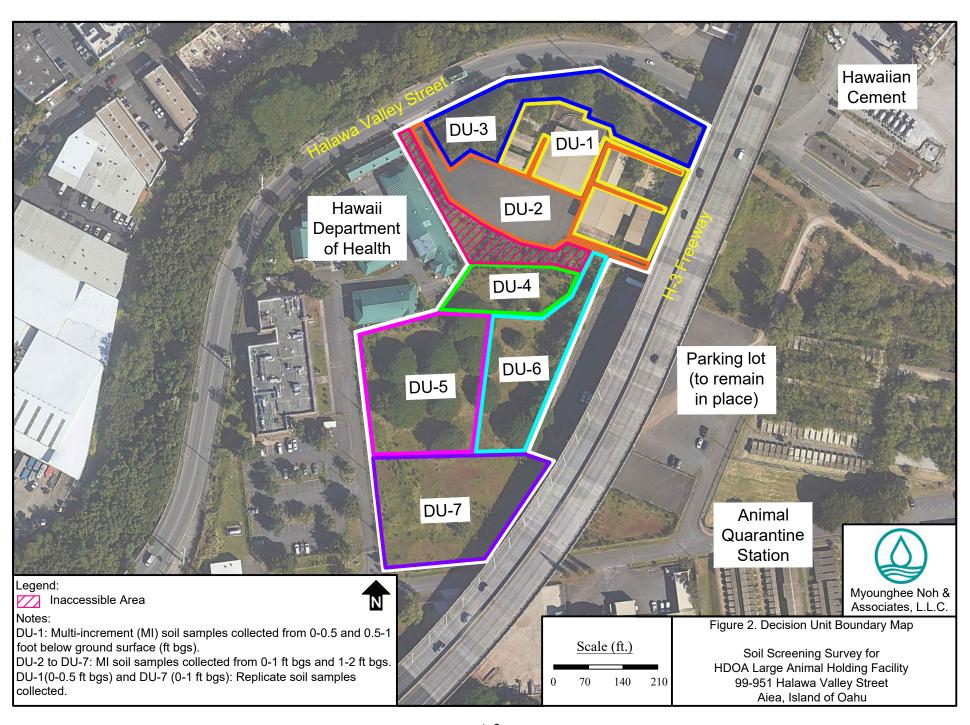
REFERENCES

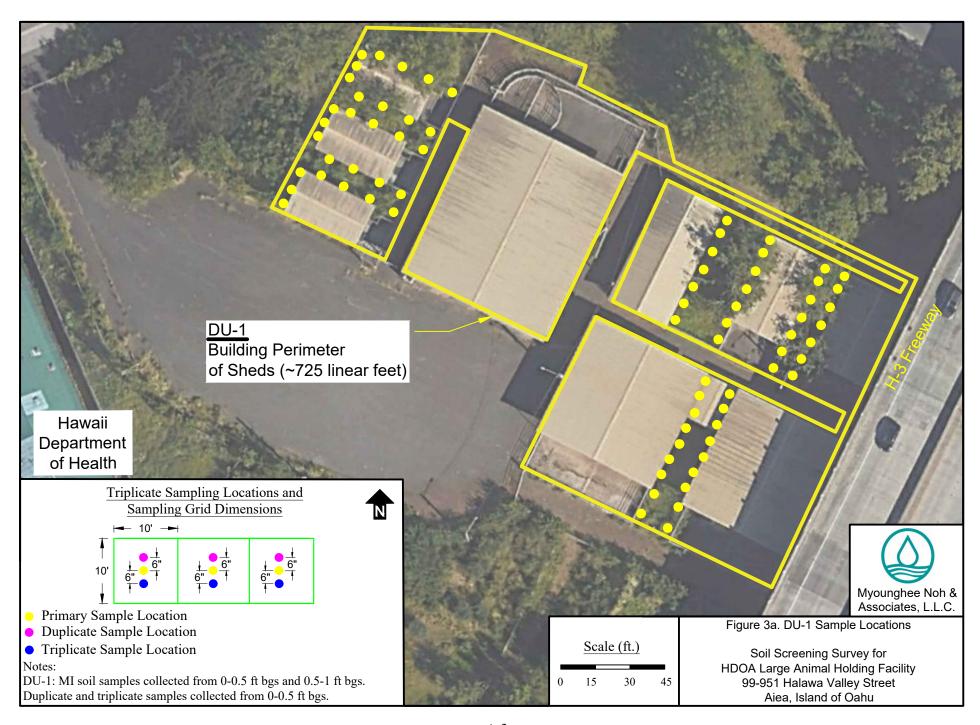
- HDOH HEER Office. (2008). *Technical Guidance Manual fo the Implementation of the Hawaii State Contingency Plan.* Honolulu: HDOH HEER Office.
- Louis Berger U.S. (2018). Final Phase I Environmental Site Assessment Report for Animal Quarantine Station Site. Honolulu: Louis Berger U.S.
- Myounghee Noh & Associates, L.L.C. (2021). Sampling and Analysis Plan for Phase 2 Animal Quaratine Station Relocation. Aiea: Myounghee Noh & Associates, L.L.C.
- State of Hawaii Department of Health. (rev. Fall 2017). *Environmental Action Levels Surfer*. Retrieved from Environmental Hazard Evaluation and Environmental Action Levels: http://eha-web.doh.hawaii.gov/eha-cma/Leaders/HEER/environmental-hazard-evaluation-and-environmental-action-levels

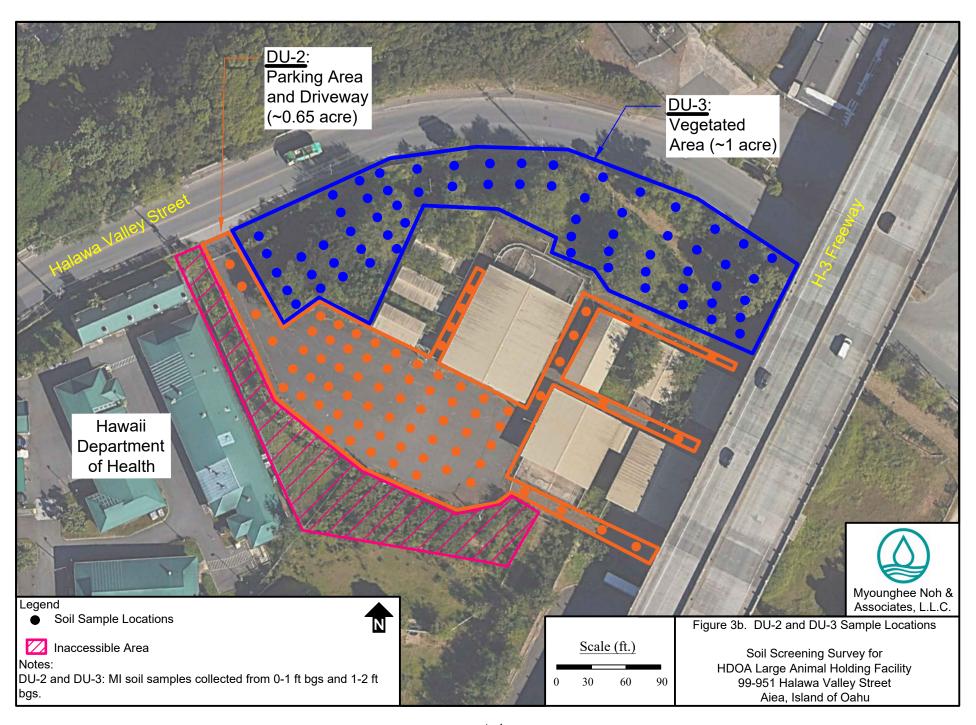
APPENDIX A FIGURES

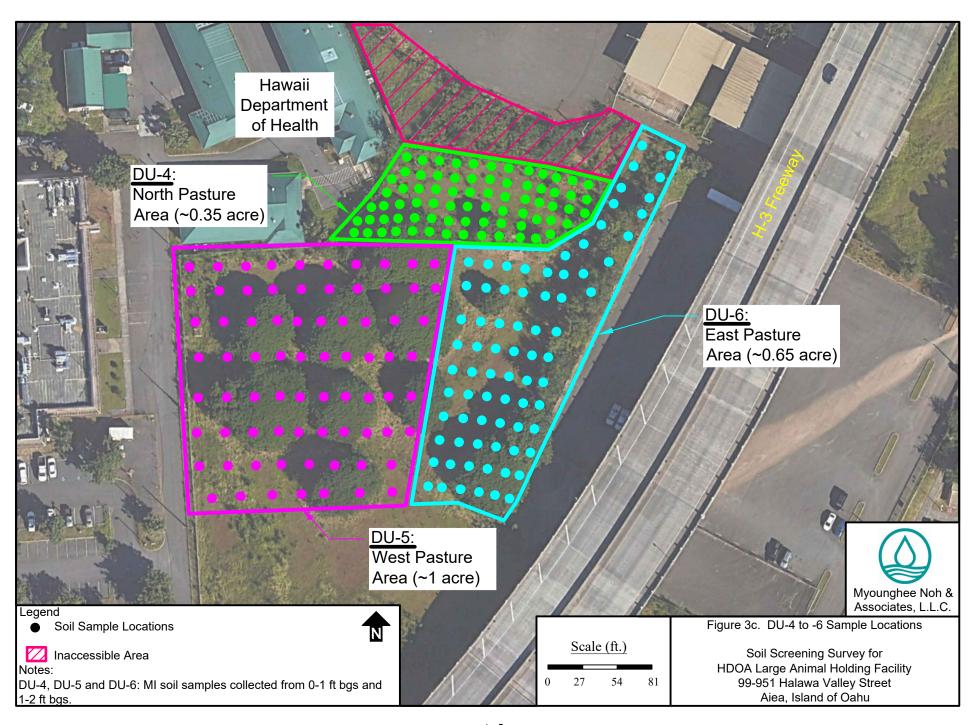
Figure 1. Site Location Map

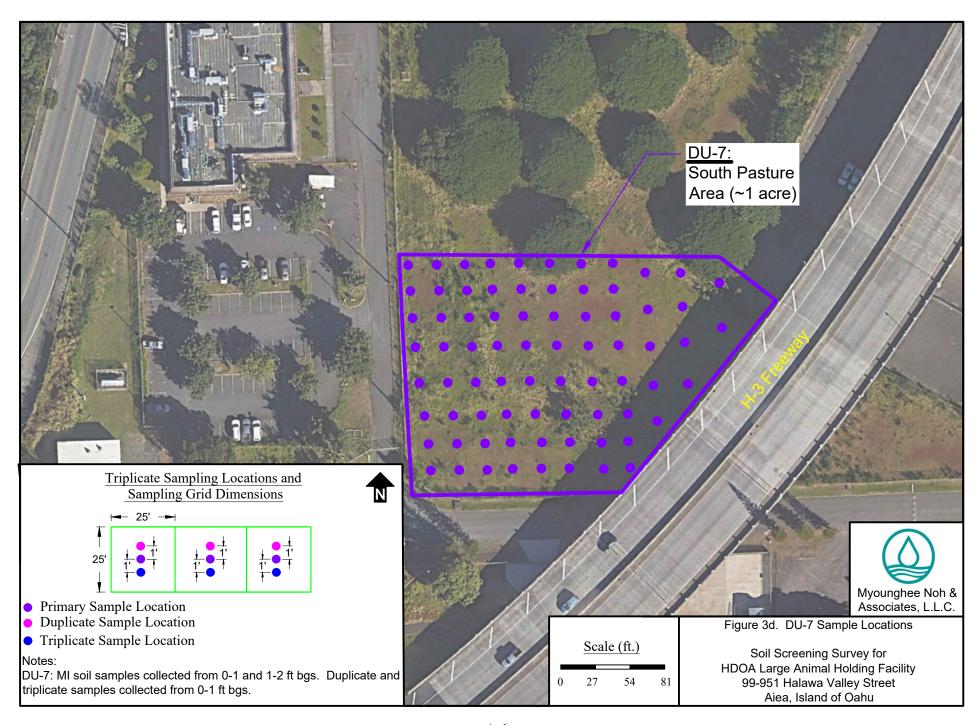

Figure 2. Decision Unit Boundary Map


Figure 3a. DU-1 Sample Locations


Figure 3b. DU-2 and 3 Sample Locations


Figure 3c. DU-4 to 7 Sample Locations

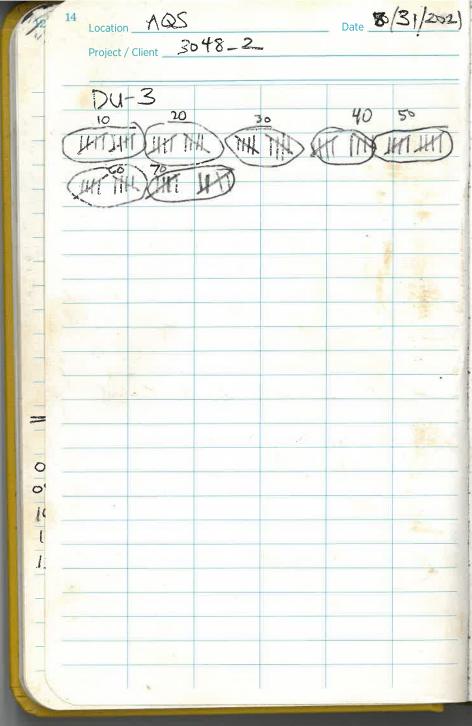

Figure 3d. DU-7 Sample Locations

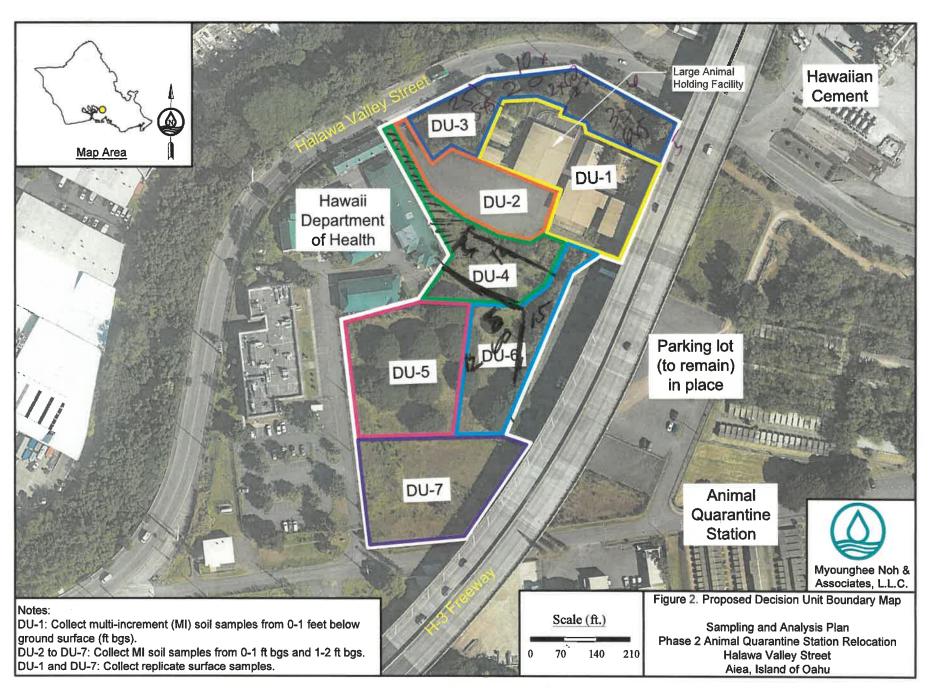


APPENDIX B FIELD NOTES

Project / Client 3048_2

800	Aniveansite
	Call Xamer- Open
	front gate
	GTH- Gabe + John
8:30	show GTH DU quears
	nuess issues
8:40	Start anling buz
11:30-	12:15 Junen
12:15	continue dulling DUZ
A L	•
Photos	5 2137 - 2N7 Du2-
	5 2137 - 2147 Duz-
1340	Finish Duz - GTH plug
	10000
	Man De Dus


Rite in the Rain.


Project / Client 3048-2

Project / Client 3048-2 800 Arrive on six HDOX unlock front 815 gate - John + Gabe Sters dulling Du7 820 ·BS 6 inches apart 3PM Depart six 8/31/2021 BC+CL onsite W/Gabe/John. 0810 onsite u/ Gestak 0815 Start DU-4 at Boring 42 Finished DU-4 10 10 Start Du-3 1030 Back on site 1300

Project / Client 3048-2

Arrive on six 1000 Start - Continue Du7 1010 1500 Depart Site 8/30/21 GTH - Gabe Kendell Arrive onsite Gare open increments HITH thish Du-4 1407 THI IM (HTT DO Rite in the Rain.

APPENDIX C SOIL ANALYTICAL RESULTS TABLES

Table 1. Soil Analytical Results: DU-1

Table 1. Soil	<u>,</u>	Analytical Re			Tier 1 Envir Action Leve					
Sample ID (3048-)/ Depth Analytes		DU1-1B 0-0.5 ft bgs Duplicate	DU1-1C 0-0.5 ft bgs Triplicate	DU1-2A 0.5-1 ft bgs	Unrestricted	Restricted				
Metals (EPA 6010B)										
Arsenic	1.3	1.7	1.4	1.1	24	95				
Lead	8.6	8.4	9.8	7.9	200	800				
	(Organochlorine l	Pesticides (EPA	8081A)						
alpha-BHC	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)						
beta-BHC	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	0.075^{1}	0.0751				
gamma-BHC	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	0.073					
delta-BHC	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)						
Heptachlor	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	1.3	5.6				
Aldrin	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	3.9	8.4				
Heptachlor epoxide	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	0.2	2.7				
Endosulfan I	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)						
Endosulfan II	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	13 ²	13 ²				
Endosulfan sulfate	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)						
Dieldrin	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	2.5	24				
4,4'-DDD	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	2.2	8.4				
4,4'-DDE	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	1.9	8.2				
4,4'-DDT	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	1.8	5.6				
Endrin	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	3.8^{3}	30^{3}				
Endrin aldehyde	ND (0.0083)	ND (0.0083)	ND (0.0083)	ND (0.0083)	3.8	30				
Chlordane (technical)	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)	17	23				
Methoxychlor	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	16	16				
Toxaphene	ND (0.17)	ND (0.17)	ND (0.17)	ND (0.17)	0.48	1.8				

Criteria: Hawaii Department of Health Tier 1 Environmental Action Levels with unrestricted (residential) and restricted (commercial/industrial) land uses above a drinking water resource and less than 150 meters from surface water (State of Hawaii Department of Health, rev. Fall 2017).

Notes:

Abbreviations/Acronyms:

EPA U.S. Environmental Protection Agency mg/kg milligrams per kilogram

ft bgs feet below ground surface ND (00) not detected (laboratory reporting limit)

ID identifier

¹ EAL is for Hexachlorocyclohexane ("BHC" as Lindane) = Alpha- + Beta- + Gamma- + Delta-BHC

² EAL is for Endosulfan = Endosulfan I + Endosulfan II + Endosulfan sulfate

³ EAL is for Endrin = Endrin + Endrin aldehyde + Endrin ketone

Table 2. Soil Analytical Results: DU-2 to 3

Table 2. Soil Analytical Results: DU-2 to 3										
Decision Unit		Analytical Res	ults (mg/kg)		Tier 1 Envi Screening Le					
Sample ID (3048-)/	D	U-2	DU	J -3						
Analytes	DU2-1A	DU2-2A	DU3-1A	DU3-2A	Unrestricted	Restricted				
Depth	0-1 ft bgs	1-2 ft bgs	0-1 ft bgs	1-2 ft bgs						
		Petroleum Hydr								
Diesel Range Organics	ND (220)	ND (24)	ND (23)	ND (22)	220	680				
Residual Range Organics	ND (450)	ND (48)	ND (46)	ND (44)	500	1,000				
		olatile Organic (
Carbazole	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
1-Methylnaphthalene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.89	0.89				
Pyridine	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
N-Nitrosodimethylamine	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)		1.0				
Phenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	1.8	1.8				
Aniline	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
bis(2-Chloroethyl)ether	ND (180)	ND (0.95)	ND (1.8)	ND (1.8)	0.004	0.004				
2-Chlorophenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.012	0.012				
1,3-Dichlorobenzene	ND (37)	ND (0.2) ND (0.2)	ND (0.38)	ND (0.37)	0.57 0.055	0.57				
1,4-Dichlorobenzene Benzyl alcohol	ND (37) ND (37)	ND (0.2) ND (0.2)	ND (0.38) ND (0.38)	ND (0.37) ND (0.37)	0.055	0.39				
1,2-Dichlorobenzene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.75					
2-Methylphenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.73	0.75				
bis(2-Chloroisopropyl)	ND (37)	ND (0.2)	ND (0.36)	ND (0.37)						
ether	ND (37)	ND(0.2)	ND (0.38)	ND (0.37)						
3,4-Methylphenol	ND (60)	ND (0.32)	ND (0.61)	ND (0.59)						
N-Nitroso-di-n-			· ´							
propylamine	ND (37)	ND(0.2)	ND (0.38)	ND (0.37)						
Hexachloroethane	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.023	0.023				
Nitrobenzene	ND (180)	ND (0.95)	ND (1.8)	ND (1.8)	0.0053	0.0053				
Isophorone	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.89	0.89				
2-Nitrophenol	ND(37)	ND (0.2)	ND (0.38)	ND (0.37)						
2,4-Dimethylphenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	9.8	9.8				
Benzoic acid	ND (180)	ND (0.95)	ND (1.8)	ND (1.8)						
bis(2-Chloroethoxy)	ND (27)	ND (0.2)	NID (0.29)	ND (0.27)						
methane	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
2,4-Dichlorophenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.0073	0.0073				
1,2,4-Trichlorobenzene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.18	1.4				
Naphthalene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	3.1	3.1				
4-Chloroaniline	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.0073	0.0073				
Hexachlorobutadiene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.041	0.041				
4-Chloro-3-methylphenol	ND (37)	ND(0.2)	ND (0.38)	ND (0.37)						
2-Methylnaphthalene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	1.9	1.9				
Hexachlorocyclo	ND (180)	ND (0.95)	ND (1.8)	ND (1.8)						
pentadiene		` ′	\ ´	` ´	0.21	0.21				
2,4,6-Trichlorophenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.31	0.31				
2,4,5-Trichlorophenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.5	0.5				
2-Chloronaphthalene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
2-Nitroaniline Dimethylphthalate	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	26	26				
Acenaphthylene	ND (37) ND (37)	ND (0.2) ND (0.2)	ND (0.38)	ND (0.37) ND (0.37)	26 120	120				
2,6-Dinitrotoluene	ND (37)	ND (0.2) ND (0.2)	ND (0.38) ND (0.38)	ND (0.37) ND (0.37)	0.0051	0.0051				
3-Nitroaniline	ND (37)	ND (0.2) ND (0.2)	ND (0.38) ND (0.38)	ND (0.37) ND (0.37)	0.0031	0.0031				
Acenaphthene	ND (37)	ND (0.2) ND (0.2)	ND (0.38)	ND (0.37)	120	120				
2,4-Dinitrophenol	ND (37) ND (180)	ND (0.2) ND(0.95)	ND (0.38) ND (1.8)	ND (0.37) ND (1.8)	0.024	0.024				
4-Nitrophenol	ND (180)	ND (0.93)	ND (1.8)	ND (1.8) ND (0.37)	0.024					
Dibenzofuran	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
Dioonzolulan	1111 (21)	110 (0.4)	110 (0.30)	110 (0.37)						

Decision Unit		Analytical Res	ults (mg/kg)		Tier 1 Envi Screening Lo					
Sample ID (3048-)/	D	U-2	DU	J -3		\ 8.8/				
Analytes Depth	DU2-1A 0-1 ft bgs	DU2-2A 1-2 ft bgs	DU3-1A 0-1 ft bgs	DU3-2A 1-2 ft bgs	Unrestricted	Restricted				
2,4-Dinitrotoluene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.024	0.024				
Diethylphthalate	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	3.7	3.7				
Fluorene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	93	93				
4-Chlorophenyl- phenylether	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
4-Nitroaniline	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
4,6-Dinitro- 2methylphenol	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
N-Nitrosodiphenylamine	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
1,2-diphenylhydrazine (as azobenzene)	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
4-Bromophenyl- phenylether	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
Hexachlorobenzene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	0.22	0.23				
Pentachlorophenol	ND (180)	ND (0.95)	ND (1.8)	ND (0.37)	0.78	0.78				
Phenanthrene	ND (37)	ND (0.2)	ND (0.38)	ND (1.8)	0.098	0.098				
Anthracene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	69	69				
Di-n-butylphthalate	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
Fluoranthene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	87	87				
Benzidine	ND (180)	ND (0.95)	ND (1.8)	ND (1.8)						
Pyrene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	44	44				
Butylbenzylphthalate	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
3,3'-Dichlorobenzidine	ND (180)	ND (0.95)	ND (1.8)	ND (1.8)	0.092	0.092				
Benzo(a)anthracene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	10	10				
Chrysene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	30	30				
bis(2-Ethylhexyl) phthalate	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	37	140				
Di-n-octylphthalate	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)						
Benzo(b)fluoranthene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	11	21				
Benzo(k)fluoranthene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	39	39				
Benzo(a)pyrene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	3.6	5.9				
Indeno(1,2,3-cd)pyrene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	11	31				
Dibenz(a,h)anthracene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	1.1	18				
Benzo(g,h,i)perylene	ND (37)	ND (0.2)	ND (0.38)	ND (0.37)	35	35				
		ychlorinated Bi								
Aroclor-1016	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)						
Aroclor-1221	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)						
Aroclor-1232	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)						
Aroclor-1242	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)		0 -				
Aroclor-1248	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)	1.2	8.6				
Aroclor-1254	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)						
Aroclor-1260	ND (0.083)	ND (0.033)	ND (0.083)	ND (0.083)						
Aroclor-1262	ND (0.083) ND (0.083)	ND (0.033) ND (0.033)	ND (0.083) ND (0.083)	ND (0.083) ND (0.083)						
Aroclor-1268	Resource Conservation and Recovery Act Metals (EPA 6010B/7471A)									
Arsenic	5.9	ND (0.50)	2.4	2.8	24	95				
Barium	50	82	65	95	1,000	2,500				
Cadmium	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	14	72				
Chromium	76	120	170	140	1,100	1,100				
Lead	2.5	3.5	10	13	200	800				
Mercury	ND (0.19)	ND (0.19)	ND (0.16)	ND (0.17)	4.7	61				
Selenium	ND (0.19)	ND (1.5)	ND (0.10)	ND (1.5)	78	1,000				
2010111u111	112 (1.2)	110 (1.0)	110 (1.0)	1111 (1.0)	70	1,000				

Decision Unit		Analytical Resu	ılts (mg/kg)		Tier 1 Environmental Screening Level (mg/kg)					
Sample ID (3048-)/	D	U-2	DU	J -3						
Analytes	DU2-1A	DU2-2A	DU3-1A	DU3-2A	Unrestricted	Restricted				
Depth	0-1 ft bgs	1-2 ft bgs	0-1 ft bgs	1-2 ft bgs						
Silver	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	78	1,000				
Organochlorine Pesticides (EPA 8081A)										
alpha-BHC	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)						
beta-BHC	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	0.075^{1}	0.0751				
gamma-BHC	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	0.073	0.075^{1}				
delta-BHC	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)						
Heptachlor	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	1.3	5.6				
Aldrin	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	3.9	8.4				
Heptachlor epoxide	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	0.2	2.7				
Endosulfan I	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)		13 ²				
Endosulfan II	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	13 ²					
Endosulfan sulfate	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)						
Dieldrin	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	2.5	24				
4,4'-DDD	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	2.2	8.4				
4,4'-DDE	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	1.9	8.2				
4,4'-DDT	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	1.8	5.6				
Endrin	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	3.8^{3}	30^{3}				
Endrin aldehyde	ND (0.033)	ND (0.017)	ND (0.017)	ND (0.017)	3.8	30°				
Chlordane (technical)	ND (0.33)	ND (0.17)	ND (0.17)	ND (0.17)	17	23				
Methoxychlor	ND (0.066)	ND (0.033)	ND (0.033)	ND (0.033)	16	16				
Toxaphene	ND (0.66)	ND (0.33)	ND (0.33)	ND (0.33)	0.48	1.8				

Criteria: Hawaii Department of Health Tier 1 Environmental Action Levels with unrestricted (residential) and restricted (commercial/industrial) land uses above a drinking water resource and less than 150 meters from surface water (State of Hawaii Department of Health, rev. Fall 2017).

Notes:

Abbreviations/Acronyms:

EPA U.S. Environmental Protection Agency mg/kg milligrams per kilogram

ft bgs feet below ground surface ND (00) not detected (laboratory reporting limit)

ID identifier

EAL is for Hexachlorocyclohexane ("BHC" as Lindane) = Alpha- + Beta- + Gamma- + Delta-BHC

² EAL is for Endosulfan = Endosulfan I + Endosulfan II + Endosulfan sulfate

³ EAL is for Endrin = Endrin + Endrin aldehyde + Endrin ketone

Table 3. Soil Analytical Results: DU-4 to 5

Table 3. Soil Analytical Results: DU-4 to 5										
		Analytical Res	sults (mg/kg)		Tier 1 Environmental Screening Level (mg/kg)					
Decision Unit Sample ID (3048-)/	n	U-4	DI		Screening Le	vei (mg/kg)				
Analytes	DU4-1A	DU4-2A	DU5-1A	DU5-2A	Unrestricted	Restricted				
Depth	0-1 ft bgs	1-2 ft bgs	0-1 ft bgs	1-2 ft bgs	Omestricted	Restricted				
Бери		etroleum Hydro								
Diesel Range Organics	ND (23)	ND (23)	ND (23)	ND (23)	220	680				
Residual Range Organics	ND (46)	ND (46)	ND (47)	ND (45)	500	1,000				
Trestaum Tunige etgunies		latile Organic C		\ /	200	1,000				
Carbazole	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
1-Methylnaphthalene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.89	0.89				
Pyridine	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
N-Nitrosodimethylamine	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
Phenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	1.8	1.8				
Aniline	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
bis(2-Chloroethyl)ether	ND (9.2)	ND (0.91)	ND (3.8)	ND (0.90)	0.004	0.004				
2-Chlorophenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.012	0.012				
1,3-Dichlorobenzene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.57	0.57				
1,4-Dichlorobenzene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.055	0.39				
Benzyl alcohol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
1,2-Dichlorobenzene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.75	0.75				
2-Methylphenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
bis(2-Chloroisopropyl) ether	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
3,4-Methylphenol	ND (3.1)	ND (0.30)	ND (1.3)	ND (0.3)						
N-Nitroso-di-n- propylamine	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
Hexachloroethane	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.023	0.023				
Nitrobenzene	ND (9.2)	ND (0.91)	ND (3.8)	ND(0.9)	0.0053	0.0053				
Isophorone	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.89	0.89				
2-Nitrophenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
2,4-Dimethylphenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	9.8	9.8				
Benzoic acid	ND (9.2)	ND (0.91)	ND (3.8)	ND (0.9)						
bis(2- Chloroethoxy)methane	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
2,4-Dichlorophenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.0073	0.0073				
1,2,4-Trichlorobenzene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.18	1.4				
Naphthalene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	3.1	3.1				
4-Chloroaniline	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.0073	0.0073				
Hexachlorobutadiene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.041	0.041				
4-Chloro-3-methylphenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
2-Methylnaphthalene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	1.9	1.9				
Hexachlorocyclo pentadiene	ND (9.2)	ND (0.91)	ND (3.8)	ND (0.9)						
2,4,6-Trichlorophenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.31	0.31				
2,4,5-Trichlorophenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.5	0.5				
2-Chloronaphthalene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
2-Nitroaniline	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
Dimethylphthalate	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	26	26				
Acenaphthylene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	120	120				
2,6-Dinitrotoluene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.0051	0.0051				
3-Nitroaniline	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
Acenaphthene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	120	120				
2,4-Dinitrophenol	ND (9.2)	ND (0.91)	ND (3.8)	ND (0.9)	0.024	0.024				
4-Nitrophenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						
Dibenzofuran	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)						

Decision Unit		Analytical Res	sults (mg/kg)		Tier 1 Environmental Screening Level (mg/kg)				
Sample ID (3048-)/	D	U-4	DU	IJ -5		() ()			
Analytes Depth	DU4-1A 0-1 ft bgs	DU4-2A 1-2 ft bgs	DU5-1A 0-1 ft bgs	DU5-2A 1-2 ft bgs	Unrestricted	Restricted			
2,4-Dinitrotoluene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.024	0.024			
Diethylphthalate	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	3.7	3.7			
Fluorene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	93	93			
4-Chlorophenyl- phenylether	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
4-Nitroaniline	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
4,6-Dinitro-			`	` /					
2methylphenol	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
N-Nitrosodiphenylamine	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
1,2-diphenylhydrazine (as azobenzene)	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
4-Bromophenyl- phenylether	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
Hexachlorobenzene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.22	0.23			
Pentachlorophenol	ND (1.9) ND (9.2)	ND (0.19)	ND (0.79) ND (3.8)	ND (0.19)	0.22	0.23			
Phenanthrene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	0.098	0.098			
Anthracene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	69	69			
Di-n-butylphthalate	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
Fluoranthene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	87	87			
Benzidine	ND (9.2)	ND (0.91)	ND (3.8)	ND (0.9)					
Pyrene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	44	44			
Butylbenzylphthalate	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
3,3'-Dichlorobenzidine	ND(9.2)	ND (0.91)	ND (3.8)	ND (0.9)	0.092	0.092			
Benzo(a)anthracene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	10	10			
Chrysene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	30	30			
bis(2- Ethylhexyl)phthalate	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	37	140			
Di-n-octylphthalate	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)					
Benzo(b)fluoranthene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	11	21			
Benzo(k)fluoranthene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	39	39			
Benzo(a)pyrene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	3.6	5.9			
Indeno(1,2,3-cd)pyrene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	11	31			
Dibenz(a,h)anthracene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	1.1	18			
Benzo(g,h,i)perylene	ND (1.9)	ND (0.19)	ND (0.79)	ND (0.19)	35	35			
(C) //1 J	Pol	ychlorinated Bir	\ /	3082)					
Aroclor-1016	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)					
Aroclor-1221	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)	1				
Aroclor-1232	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)					
Aroclor-1242	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)					
Aroclor-1248	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)	1.2	8.6			
Aroclor-1254	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)					
Aroclor-1260	ND (0.083)	ND (0.083)	ND (0.083)	0.13]				
Aroclor-1262	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)					
Aroclor-1268	ND (0.083)	ND (0.083)	ND (0.083)	ND (0.083)					
Resource Conservation and Recovery Act Metals (EPA 6010B/7471A)									
Arsenic	4.7	3.6	2.2	5.5	24	95			
Barium	110	110	64	140	1,000	2,500			
Cadmium	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	14	72			
Chromium	200	180	170	170	1,100	1,100			
Lead	15	12	11	20	200	800			
Mercury	ND (0.17)	ND (0.18)	ND (0.18)	ND (0.17)	4.7	61			
Selenium	ND (1.5)	ND (1.5)	ND (1.5)	ND(1.5)	78	1,000			

Decision Unit		Analytical Res		Tier 1 Environmental Screening Level (mg/kg)		
Sample ID (3048-)/	D	U-4	DU	J -5		
Analytes	DU4-1A	DU4-2A	DU5-1A	DU5-2A	Unrestricted	Restricted
Depth	0-1 ft bgs	1-2 ft bgs	0-1 ft bgs	1-2 ft bgs		
Silver	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	78	1,000
	Orga	anochlorine Pest	ticides (EPA 80	081A)		
alpha-BHC	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)		
beta-BHC	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	0.075^{1}	0.0751
gamma-BHC	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	0.073	
delta-BHC	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)		
Heptachlor	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	1.3	5.6
Aldrin	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	3.9	8.4
Heptachlor epoxide	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	0.2	2.7
Endosulfan I	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)		
Endosulfan II	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	13 ²	13^{2}
Endosulfan sulfate	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)		
Dieldrin	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	2.5	24
4,4'-DDD	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	2.2	8.4
4,4'-DDE	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	1.9	8.2
4,4'-DDT	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	1.8	5.6
Endrin	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	3.8^{3}	30^{3}
Endrin aldehyde	ND (0.017)	ND (0.017)	ND (0.017)	ND (0.017)	3.8	30°
Chlordane (technical)	ND (0.17)	ND (0.17)	ND (0.17)	ND (0.17)	17	23
Methoxychlor	ND (0.033)	ND (0.033)	ND (0.033)	ND (0.033)	16	16
Toxaphene	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	0.48	1.8

Criteria: Hawaii Department of Health Tier 1 Environmental Action Levels with unrestricted (residential) and restricted (commercial/industrial) land uses above a drinking water resource and less than 150 meters from surface water (State of Hawaii Department of Health, rev. Fall 2017).

Notes:

Abbreviations/Acronyms:

EPA U.S. Environmental Protection Agency mg/kg milligrams per kilogram

fit bgs feet below ground surface ND (00) not detected (laboratory reporting limit)

ID identifier

EAL is for Hexachlorocyclohexane ("BHC" as Lindane) = Alpha- + Beta- + Gamma- + Delta-BHC

² EAL is for Endosulfan = Endosulfan I + Endosulfan II + Endosulfan sulfate

³ EAL is for Endrin = Endrin + Endrin aldehyde + Endrin ketone

Table 4. Soil Analytical Results: DU-6 to 7

1 able 4. Son Analytic	Analytical Results (mg/kg)						Tier 1 Envi	ronmental		
	DU	J -6		D	U-7		Screening Le	vel (mg/kg)		
Decision Unit Sample ID (3048-)/ Analytes Depth	DU6-1A 0-1 ft bgs	DU6-2A 1-2 ft bgs	DU7-1A 0-0.5 ft bgs Primary	DU7-1B 0-0.5 ft bgs Duplicate	DU7-1C 0-0.5 ft bgs Triplicate	DU7-2A 0.5-1 ft bgs	Unrestricted	Restricted		
Total Petroleum Hydrocarbons (EPA 8015M)										
Diesel Range Organics	ND (23)	ND (22)	ND (24)	ND (23)	ND (23)	ND (22)	220	680		
Residual Range Organics	ND (47)	ND (45)	ND (47)	ND (47)	ND (47)	ND (45)	500	1,000		
Semi-Volatile Organic Compounds (EPA 8270C)										
Carbazole	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
1-Methylnaphthalene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.89	0.89		
Pyridine	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
N-Nitrosodimethylamine	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
Phenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	1.8	1.8		
Aniline	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
bis(2-Chloroethyl)ether	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)	0.004	0.004		
2-Chlorophenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.012	0.012		
1,3-Dichlorobenzene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.57	0.57		
1,4-Dichlorobenzene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.055	0.39		
Benzyl alcohol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
1,2-Dichlorobenzene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.75	0.75		
2-Methylphenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
bis(2-Chloroisopropyl) ether	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
3,4-Methylphenol	ND (0.62)	ND (0.6)	ND (3.8)	ND (3.1)	ND (1.6)	ND (0.6)				
N-Nitroso-di-n-propylamine	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
Hexachloroethane	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.023	0.023		
Nitrobenzene	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)	0.0053	0.0053		
Isophorone	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.89	0.89		
2-Nitrophenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
2,4-Dimethylphenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	9.8	9.8		
Benzoic acid	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)				
bis(2-Chloroethoxy) methane	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
2,4-Dichlorophenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.0073	0.0073		
1,2,4-Trichlorobenzene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.18	1.4		
Naphthalene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	3.1	3.1		
4-Chloroaniline	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.0073	0.0073		
Hexachlorobutadiene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.041	0.041		
4-Chloro-3-methylphenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)				
2-Methylnaphthalene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	1.9	1.9		
Hexachlorocyclo pentadiene	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)				

C-8

		Analytical Results (mg/kg)					Tier 1 Envi	
	DU	J -6		D	U-7		Screening Le	vel (mg/kg)
Decision Unit Sample ID (3048-)/ Analytes Depth	DU6-1A 0-1 ft bgs	DU6-2A 1-2 ft bgs	DU7-1A 0-0.5 ft bgs Primary	DU7-1B 0-0.5 ft bgs Duplicate	DU7-1C 0-0.5 ft bgs Triplicate	DU7-2A 0.5-1 ft bgs	Unrestricted	Restricted
2,4,6-Trichlorophenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.31	0.31
2,4,5-Trichlorophenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.5	0.5
2-Chloronaphthalene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
2-Nitroaniline	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
Dimethylphthalate	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	26	26
Acenaphthylene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	120	120
2,6-Dinitrotoluene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.0051	0.0051
3-Nitroaniline	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
Acenaphthene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	120	120
2,4-Dinitrophenol	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)	0.024	0.024
4-Nitrophenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
Dibenzofuran	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
2,4-Dinitrotoluene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.024	0.024
Diethylphthalate	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	3.7	3.7
Fluorene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	93	93
4-Chlorophenyl-phenylether	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
4-Nitroaniline	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
4,6-Dinitro-2methylphenol	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
N-Nitrosodiphenylamine	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
1,2-diphenylhydrazine (as azobenzene)	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
4-Bromophenyl-phenylether	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
Hexachlorobenzene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.22	0.23
Pentachlorophenol	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)	0.78	0.78
Phenanthrene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	0.098	0.098
Anthracene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	69	69
Di-n-butylphthalate	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
Fluoranthene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	87	87
Benzidine	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)		
Pyrene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	44	44
Butylbenzylphthalate	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
3,3'-Dichlorobenzidine	ND (1.8)	ND (1.8)	ND (3.8)	ND (9.3)	ND (4.7)	ND (1.8)	0.092	0.092
Benzo(a)anthracene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	10	10
Chrysene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	30	30
bis(2-Ethylhexyl) phthalate	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	37	140
Di-n-octylphthalate	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)		
Benzo(b)fluoranthene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	11	21

			Analytical R	esults (mg/kg)			Tier 1 Envi	
	D	U-6			U-7		Screening Le	evel (mg/kg)
Decisio	11116-14	DU6-2A	DU7-1A	DU7-1B	DU7-1C	DU7-2A		
Sample ID (3	3048-)/ 0_1 ft bas	1-2 ft bgs	0-0.5 ft bgs	0-0.5 ft bgs	0-0.5 ft bgs	0.5-1 ft bgs	Unrestricted	Restricted
	Depth	Ŭ.	Primary	Duplicate	Triplicate	8		
Benzo(k)fluoranthene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	39	39
Benzo(a)pyrene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	3.6	5.9
Indeno(1,2,3-cd)pyrene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	11	31
Dibenz(a,h)anthracene	ND (0.39)	ND (0.37)	ND (0.79)	ND (1.9)	ND (0.98)	ND (0.37)	1.1	18
Benzo(g,h,i)perylene	ND (0.39)	ND (0.37)	ND(0.79)	ND (1.9)	ND (0.98)	ND (0.37)	35	35
			chlorinated Bi	phenyls (EPA				
Aroclor-1016	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
Aroclor-1221	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
Aroclor-1232	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
Aroclor-1242	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
Aroclor-1248	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)	1.2	8.6
Aroclor-1254	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
Aroclor-1260	0.11	0.15	ND (0.083)	0.21	ND (0.081)	0.32		
Aroclor-1262	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
Aroclor-1268	ND (0.033)	ND (0.082)	ND (0.083)	ND (0.088)	ND (0.081)	ND (0.033)		
	Reso	urce Conservat	ion and Recov	ery Act Metals	(EPA 6010B/7	(471A)		
Arsenic	3.1	5.8	2.2	3.8	3.8	5.9	24	95
Barium	81	110	86	100	96	160	1,000	2,500
Cadmium	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	14	72
Chromium	200	160	170	200	200	180	1,100	1,100
Lead	14	16	13	13	15	41	200	800
Mercury	ND (0.18)	ND (0.17)	ND (0.16)	ND (0.17)	ND (0.17)	ND (0.16)	4.7	61
Selenium	ND (1.5)	ND (1.5)	ND (1.5)	ND (1.5)	ND (1.5)	ND (1.5)	78	1,000
Silver	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	78	1,000
		Orga	nochlorine Pes	sticides (EPA 8	081A)			
alpha-BHC	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)		
beta-BHC	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	0.075^{1}	0.0751
gamma-BHC	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	0.075	0.075^{1}
delta-BHC	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)		
Heptachlor	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	1.3	5.6
Aldrin	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	3.9	8.4
Heptachlor epoxide	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	0.2	2.7
Endosulfan I	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)		
Endosulfan II	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	13^{2}	132
Endosulfan sulfate	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)		
Endosanan sanate				` /	` /	` /		
Dieldrin Dieldrin	ND (0.016)	ND (0.016)	ND(0.017)	ND (0.018)	ND (0.016)	ND (0.016)	2.5	24

				Tier 1 Environmental				
	DU	J -6	DU-7				Screening Level (mg/kg)	
Decision Unit Sample ID (3048-)/ Analytes Depth	DU6-IA 0-1 ft høs	DU6-2A 1-2 ft bgs	DU7-1A 0-0.5 ft bgs Primary	DU7-1B 0-0.5 ft bgs Duplicate	DU7-1C 0-0.5 ft bgs Triplicate	DU7-2A 0.5-1 ft bgs	Unrestricted	Restricted
4,4'-DDE	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	1.9	8.2
4,4'-DDT	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	1.8	5.6
Endrin	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	3.8^{3}	30^{3}
Endrin aldehyde	ND (0.016)	ND (0.016)	ND (0.017)	ND (0.018)	ND (0.016)	ND (0.016)	3.0	30
Chlordane (technical)	ND (0.16)	ND (0.16)	0.28	ND (0.18)	0.34	ND (0.16)	17	23
Methoxychlor	ND (0.033)	ND (0.033)	ND (0.033)	ND (0.035)	ND (0.032)	ND (0.033)	16	16
Toxaphene	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.35)	ND (0.16)	ND (0.33)	0.48	1.8

Criteria: Hawaii Department of Health Tier 1 Environmental Action Levels with unrestricted (residential) and restricted (commercial/industrial) land uses above a drinking water resource and less than 150 meters from surface water (State of Hawaii Department of Health, rev. Fall 2017).

Notes

Abbreviations/Acronyms:

EPA U.S. Environmental Protection Agency mg/kg milligrams per kilogram

fit bgs feet below ground surface ND (00) not detected (laboratory reporting limit)

ID identifier

¹ EAL is for Hexachlorocyclohexane ("BHC" as Lindane) = Alpha- + Beta- + Gamma- + Delta-BHC

² EAL is for Endosulfan = Endosulfan I + Endosulfan II + Endosulfan sulfate

³ EAL is for Endrin = Endrin + Endrin aldehyde + Endrin ketone

APPENDIX D LABORATORY ANALYTICAL REPORTS

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 449770

Report Level: II

Report Date: 09/08/2021

Analytical Report *prepared for:*

Jennah Oshiro Myounghee Noh & Associates 99-1046 Iwaena Street 210A Aiea, HI 96701

Project: 3048 2 - AQS

Authorized for release by:

Jessier & ilbeum

Jess Silberman, Project Manager

510-204-2236

jessica.silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Jennah Oshiro

Myounghee Noh & Associates

99-1046 Iwaena Street

210A

Aiea, HI 96701

Lab Job #: 449770

Project No: 3048_2

Location: AQS

Date Received: 08/27/21

Sample ID	Lab ID	Collected	Matrix
3048-DU2-1A	449770-001	08/23/21 13:35	Soil
3048-DU2-2A	449770-002	08/23/21 13:35	Soil
3048-DU7-1A	449770-003	08/25/21 12:02	Soil
3048-DU7-1B	449770-004	08/25/21 12:02	Soil
3048-DU7-1C	449770-005	08/25/21 12:02	Soil
3048-DU7-2A	449770-006	08/25/21 12:02	Soil
3048-DU6-1A	449770-007	08/25/21 15:16	Soil
3048-DU6-2A	449770-008	08/25/21 15:16	Soil

Case Narrative

Location: AQS

Myounghee Noh & Associates Lab Job Number: 449770 99-1046 Iwaena Street Project No: 3048 2 210A Aiea, HI 96701

Date Received: 08/27/21 Jennah Oshiro

This data package contains sample and QC results for eight soil samples, requested for the above referenced project on 08/27/21. The samples were received cold and intact. Multi-Increment Sampling (ISM) was performed on all samples in accordance with HDOH specifications.

TPH-Extractables by GC (EPA 8015M):

Low recovery was observed for diesel C10-C28 in the BSD for batch 273267; the low recovery was not associated with any reported results. High RPD was also observed for diesel C10-C28 in the BS/BSD for batch 273267; the high RPD was not associated with any reported results. 3048-DU2-1A (lab # 449770-001) was diluted due to the dark color of the sample extract. No other analytical problems were encountered.

Semivolatile Organics by GC/MS (EPA 8270C):

High response was observed for 2,4-dinitrotoluene in the CCV analyzed 09/02/21 10:19; affected data was qualified with "b". High surrogate recovery was observed for phenol-d6 in 3048-DU6-1A (lab # 449770-007); no target analytes were detected in the sample. 3048-DU2-1A (lab # 449770-001) was diluted due to the dark and viscous nature of the sample extract. A number of samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

Pesticides (EPA 8081A):

High RPD was observed for endrin aldehyde in the BS/BSD for batch 273331; this analyte was not detected at or above the RL in the associated samples. Many samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

PCBs (EPA 8082):

Many samples were diluted due to the dark color of the sample extracts. 3048-DU7-2A (lab # 449770-006) and 3048-DU6-1A (lab # 449770-007) were diluted due to the color of the sample extracts. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

Moisture (ASTM D2216):

No analytical problems were encountered.

CHAIN OF CUSTODY

ENTHA ANALYT	LPY ICAL	C&T LOGIN # 44977	76	Page of
	Phone (510) 486 Fax (510) 486 Sampler: Report To: Company:	6-0900 6-0532 Jennah Osnivo : Jennah Osnivo :: Myoungher Who Associ :: 808-936-7382 ennah@non-associates.com	20 (8015) 20 (8015) 20 (471) 20 (8174)	RUESI
Lab No. Sample ID. No. No. Sample ID. No. No. No. No. No. No. No. No. No. No		PRESERVATIVE In property of Conference of C	WIS TO SECTION TO SECT	
Notes:	SAMPLE RECEIPT Intact Cold On Ice Ambient	DATE: TIME:	500 Elfry 94-orangeo.	27/2 0/0 ATE: TIME:

Are custody seals present? No, or \(\text{Yes.} \) If yes, where? \(\text{on cooler}, \(\text{on samples}, \(\text{on packag} \) \(\text{Date:} \) How many \(\text{or Signature}, \(\text{ol Initials}, \text{on None} \) \(\text{Were custody seals intact upon arrival? } \) Yes \(\text{ONO} \) No \(\text{skip Section 3 below} \) \(\text{If no cooler Sample Temp (°C):} \) Using IR Gun \(\text{ol B}, \) or \(\text{OC} \) \(\text{Samples received on ice directly from the field. Cooling process had begun} \) \(\text{If in cooler: Date Opened } \(\text{OPENIONS } \) \(\text{Section 3:} \) \(\text{Important: Notify PM if temperature exceeds 6°C or ar Packing in cooler: (if other, describe) \) \(\text{OB Bags,} \(\text{ONONE,} \) \(\text{ONONE,} \) \(\text{OB Bags,} \) \(\text{None,} \) \(\text{Cloth material,} \) \(\text{Cardboard,} \) \(\text{Styrofoam,} \) \(\text{Paper towel} \) \(\text{OS amples received on ice directly from the field. Cooling process had begun} \) \(\text{Type of ice used:} \) \(\text{OW Wet,} \) \(\text{OB Blue/Gel,} \) \(\text{ONONE} \) \(\text{None} \) \(\text{Temperature blank(s) included?} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{OF IR Gun # \(\text{ID B} \) \(\text{ID B IR Gun # \(\text{ID B} \) \(ID B IR Gun # \(\text{ID	rive frozer
Section 2: Shipping info (if applicable) FCOEX 7746 \$174 7540 Are custody seals present? MNO, or Yes. If yes, where? on cooler, on samples, on package Date: How many Signature, Initials, None Were custody seals intact upon arrival? Yes No N/A Samples received in a cooler? Yes, how many? No (skip Section 3 below) Using IR Gun # B, or C Using IR Gun # B, or C Samples received on ice directly from the field. Cooling process had begun If in cooler: Date Opened MC7771 By (print) MC Signature Cardboard, Styrofoam, Paper towel Samples received on ice directly from the field. Cooling process had begun Type of ice used : Wet, Blue/Gel, None Temperature blank(s) included? Yes, Notemperature measured using Thermometer ID: Or IR Gun # B C Cooler Temp (°C): #1: #v #2: #3: #4: #5: #6: #7: Section 4: YES Notemperature with the project identifiable Note Note Yes Notemperature with the project identifiable Note Yes Notemperature with the project identifiable Note Yes Notemperature with the project identifiable Yes Notemperature with the project identifiable Yes Notemperature with the project identifiable Yes Yes	rive frozer
Section 2: Shipping info (if applicable)	rive frozer
Are custody seals present?	rive frozer
Date: How many Signature, □ Initials, □ None Were custody seals intact upon arrival? □ Yes □ No □ N/A Samples received in a cooler? ○ Yes, how many? □ No (skip Section 3 below) If no cooler Sample Temp (°C). □ Using IR Gun # □ B, or □ C □ Samples received on ice directly from the field. Cooling process had begun If in cooler: Date Opened ○ 127/21 By (print) □ (sign) Section 3:	rive frozer
Date: How many Signature, □ Initials, □ None Were custody seals intact upon arrival? □ Yes □ No □ N/A Samples received in a cooler? ○ Yes, how many? □ No (skip Section 3 below) If no cooler Sample Temp (°C). □ Using IR Gun # □ B, or □ C □ Samples received on ice directly from the field. Cooling process had begun If in cooler: Date Opened ○ 127/21 By (print) □ (sign) Section 3:	rive frozer
Were custody seals intact upon arrival?	
Samples received in a cooler? Yes, how many?	
If no cooler Sample Temp (°C):	
□ Samples received on ice directly from the field. Cooling process had begun If in cooler: Date Opened □ 127/2 By (print) □ 158 Section 3: Important: Notify PM if temperature exceeds 6°C or ar Packing in cooler: (if other, describe) □ 158 □ Bubble Wrap, □ Foam blocks, □ Bags, □ None, □ Cloth material, □ Cardboard, □ Styrofoam, □ Paper towel. □ Samples received on ice directly from the field. Cooling process had begun Type of ice used: □ Wet, □ Blue/Gel, □ None □ Temperature blank(s) included? □ Yes, □ Note Temperature measured using □ Thermometer ID: □ 158 Gun # 158 □ C Cooler Temp (°C): #1: □ 12 □ 12 □ 13 □ 15 □ 15 □ 15 □ 15 □ 15 □ 15 □ 15	
If in cooler: Date Opened	
Section 3: Packing in cooler: (if other, describe)	
Packing in cooler: (if other, describe) Bubble Wrap, ☐ Foam blocks, ☐ Bags, ☐ None, ☐ Cloth material, ☐ Cardboard, ☐ Styrofoam, ☐ Paper towel. Samples received on ice directly from the field. Cooling process had begun Type of ice used: ☐ Wet, ☐ Blue/Gel, ☐ None ☐ Temperature blank(s) included? ☐ Yes, ☐ Note Temperature measured using ☐ Thermometer ID: ☐	
□ Bubble Wrap, □ Foam blocks, □ Bags, □ None, □ Cloth material, □ Cardboard, □ Styrofoam, □ Paper towel. □ Samples received on ice directly from the field. Cooling process had begun Type of ice used: □ Wet, □ Blue/Gel, □ None □ Temperature blank(s) included? □ Yes, □ Note Temperature measured using □ Thermometer ID: □ or IR Gun # ☑ B □ C Cooler Temp (°C): #1: ☑ #2:#3:	s
☐ Samples received on ice directly from the field. Cooling process had begun Type of ice used: ☐ Wet, ☐ Blue/Gel, ☐ None Temperature blank(s) included? ☐ Yes, ☐ None Temperature measured using ☐ Thermometer ID:	S
Type of ice used:	
Section 4: Were custody papers dry, filled out properly, and the project identifiable	
Section 4: Were custody papers dry, filled out properly, and the project identifiable	O
Section 4: YES NO Were custody papers dry, filled out properly, and the project identifiable —	
Were custody papers dry, filled out properly, and the project identifiable	- I
	O N/A
were Method 5055 sampling containers present?	
If YES, what time were they transferred to freezer?	
Did all bottles arrive unbroken/unopened?	
Are there any missing / extra samples?	
Are samples in the appropriate containers for indicated tests?	-
Are sample labels present, in good condition and complete?	_
Does the container count match the COC?	
Do the sample labels agree with custody papers?	
Was sufficient amount of sample sent for tests requested?	
Did you change the hold time in LIMS for unpreserved VOAs?	
Did you change the hold time in LIMS for preserved terracores?	
Are bubbles > 6mm present in VOA samples?	
Was the client contacted concerning this sample delivery?	
If YES, who was called?ByByBy	
	0 1/4
Section 5: Are the samples appropriately preserved? (if N/A, skip the rest of section 5) YES NO	O N/A
Did you check preservatives for all bottles for each sample?	
Did you document your preservative check?	
pH strip lot#, pH strip lot#, pH strip lot#, pH strip lot#	
Preservative added:	
☐ H2SO4 lot# added to samples on/at	
☐ HCL lot# added to samples on/at	
☐ HNO3 lot# added to samples on/at	
□ NaOH lot# added to samples on/at	
Section 6:	
Explanations/Comments:	
Date Logged in 8/21/21 By (print) AL (sign)	
Date Labeled 0/27/21 By (print) MAC (sign)	· · · · · · · · · · · · · · · · · · ·

SAMPLE ACCEPTANCE CHECKLIST

Section 1				-
Client: Myounghee Noh & Associates	Project:AQS			
Date Received: 9/1/21		✓Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skin section 3)		e Temp (°C)	_
Sample Temp (°C), One from each cooler: #1: 3.6 (Acceptance range is < 6°C but not frozen (for Microbiology samples, accepthe same day as sample receipt to have a higher temperal Shipping Information:	#2: #3:	#4:	(No Cooler) e for sample un.)	
Section 3				
Was the cooler packed with: VIce VIce Packs Paper None Cooler Temp (°C): #1: 0.3 #2:	Bubble Wrap Styro Other#3:	foam _#4:		
Section 4		1,450		
Was a COC received?		YES	NO	N/A
Are sample IDs present?		1		
Are sampling dates & times present?		V		
Is a relinquished signature present?		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?			~	
If custody seals are present, were they intact?				~
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)	V		
Did all samples arrive intact? If no, indicate in Section 4		V		
Did all bottle labels agree with COC? (ID, dates and time		~		- 1, , , , ,
Were the samples collected in the correct containers for	the required tests?	~		
Are the containers labeled with the correct preser	vatives?		-	~
Is there headspace in the VOA vials greater than 5-6 mm	n in diameter?			~
Was a sufficient amount of sample submitted for the re-	quested tests?	V		
Section 5 Explanations/Comments 24-2oz soil jars received.				
Section 6				
For discrepancies, how was the Project Manager notified	d? Verbal PM Initials:			
Project Manager's response:				
Completed By:				

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209

www.enthalpy.com/socal

Sample Acceptance Checklist – Rev 4, 8/8/2017

800-322-5555 www.gls-us.com

Ship From

ENTHALPY ANALYTICAL BERKELEY SERVICE CENTER 2323 5TH STREET BERKELEY, CA 94710

Ship To ENTHALPY ANALYTICAL (ORG) SAMPLE RECEIVING 931 W BARKLEY AVE, ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

Tracking #: 554480353

CPS

ORANGE

S10003H

ORC CA927-EH1

Print Date: 8/31/2021 1:14 PM

Package 2 of 4

LABEL INSTRUCTIONS:

9/1/201

13: 24

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

3.6/0.3

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the General Logistics Systems US, Inc. (GLS) service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gls-us.com.

SAMPLE ACCEPTANCE CHECKLIST

Section 1		
Client: Myougher Assoc. Proj Date Received: 9/2/21 Sam	ject: AQS	
Date Received: $9/2/25$ Sam	npler's Name Present: Yes No	
Section 2		
Sample(s) received in a cooler? Ves, How many? 1	Sample Temp (°C) (No Cooler) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 6.2 #2:		
(Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptance ra	inge is < 10°C but not frozen). It is acceptable for samples coll	ected
the same day as sample receipt to have a higher temperature as	long as there is evidence that cooling has begun.)	
Shipping Information:		
Section 3		
	Bubble Wrap Styrofoam	
Paper None Cooler Temp (°C): #1: 2.3 #2:	Dther #3: #4:	
Cooler Temp (°C): #1: 2,3 #2:	#3:#4:	
Section 4	YĘS NO N	I/A
Was a COC received?		
Are sample IDs present?		
Are sampling dates & times present?		
Is a relinquished signature present?	V /	
Are the tests required clearly indicated on the COC?	√ / /	
Are custody seals present?		1
If custody seals are present, were they intact?		
Are all samples sealed in plastic bags? (Recommended for Mi	icrobiology samples)	
Did all samples arrive intact? If no, indicate in Section 4 below	v. 🗸 🗼	
Did all bottle labels agree with COC? (ID, dates and times)	$ V_{\ell} $	
Were the samples collected in the correct containers for the r	required tests?	/
Are the containers labeled with the correct preservative	es? ✓	/
Is there headspace in the VOA vials greater than 5-6 mm in di	ameter?	
Was a sufficient amount of sample submitted for the request	ed tests?	
Section 5 Explanations/Comments		
Recieved 16 small jars.		
- · ·		
Section 6	1	
For discrepancies, how was the Project Manager notified?	<u>- </u>	
<u> </u>	Email (email sent to/on):/	
Project Manager's response:		
00 -	0//	
Completed By: Been Sylvesting Date	e: 9/n/23	

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

800-322-5555 www.gls-us.com

Ship From

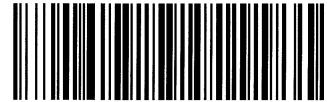
ENTHALPY ANALYTICAL BERKELEY SERVICE CENTER 2323 5TH STREET BERKELEY, CA 94710

Ship To
ENTHALPY ANALYTICAL (ORG)
SAMPLE RECEIVING
931 W BARKLEY AVE.
ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD


Tracking #: 554503017

CPS

ORANGE

S10003H

48485166

ORC CA927-EH1

Print Date: 9/1/2021 4:59 PM

Package 3 of 4

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the General Logistics Systems US, Inc. (GLS) service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gls-us.com.

6.2/2.3 672.20

Extractable Carbon Chain

Lab #: 449770 Project#: 3048 2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU2-1A Prepared: 09/02/21 Moisture: 11% Type: SAMPLE **Diln Fac: 10.00 Analyzed:** 09/02/21 Lab ID: 449770-001 Batch#: 273267 **Prep:** EPA 3580 Matrix: Soil Sampled: 08/23/21 Analysis: EPA 8015M

Basis: dry Received: 08/27/21 Analyst: MES

RL Analyte Result **Units** DRO C10-C28 ND 220 mg/Kg RRO C28-C44 ND 450 mg/Kg

%REC Surrogate Limits n-Triacontane 127 70-130

Field ID: 3048-DU2-2A Moisture: 16% Prepared: 09/02/21 Type: SAMPLE **Diln Fac: 1.000 Analyzed:** 09/02/21 **Lab ID:** 449770-002 Batch#: 273267 **Prep:** EPA 3580 Matrix: Soil Sampled: 08/23/21 Analysis: EPA 8015M

Basis: dry Received: 08/27/21 Analyst: MES

Analyte RL Result **Units** DRO C10-C28 24 ND mg/Kg RRO C28-C44 ND 48 mg/Kg

Surrogate %REC Limits 70-130 n-Triacontane

Field ID: 3048-DU7-1A Moisture: 15% Prepared: 09/02/21 Type: SAMPLE **Diln Fac: 1.000 Analyzed:** 09/02/21 **Lab ID:** 449770-003 Batch#: 273267 **Prep:** EPA 3580 Matrix: Soil Sampled: 08/25/21 Analysis: EPA 8015M

Received: 08/27/21 Analyst: MES Basis: dry

RL Analyte Result **Units** DRO C10-C28 ND 24 mg/Kg RRO C28-C44 ND 47 mg/Kg Surrogate %REC Limits n-Triacontane 70-130

95

1 of 3

Extractable Carbon Chain

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU7-1B
 Moisture:
 14%
 Prepared:
 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-004
 Batch#:
 273267
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/25/21
 Analysis:
 EPA 8015M

Basis: dry Received: 08/27/21 Analyst: MES

 Analyte
 Result
 RL
 Units

 DRO C10-C28
 ND
 23
 mg/Kg

 RRO C28-C44
 ND
 47
 mg/Kg

 Surrogate
 %REC
 Limits

 n-Triacontane
 95
 70-130

 Field ID:
 3048-DU7-1C
 Moisture:
 14%
 Prepared:
 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-005
 Batch#:
 273267
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/25/21
 Analysis:
 EPA 8015M

Basis: dry Received: 08/27/21 Analyst: MES

 Analyte
 Result
 RL
 Units

 DRO C10-C28
 ND
 23
 mg/Kg

 RRO C28-C44
 ND
 47
 mg/Kg

 Surrogate
 %REC
 Limits

 n-Triacontane
 95
 70-130

 Field ID:
 3048-DU7-2A
 Moisture:
 11%
 Prepared:
 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-006
 Batch#:
 273267
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/25/21
 Analysis:
 EPA 8015M

Basis: dry Received: 08/27/21 Analyst: MES

RL Analyte Result **Units** DRO C10-C28 ND 22 mg/Kg RRO C28-C44 ND 45 mg/Kg Surrogate %REC Limits n-Triacontane 97 70-130

2 of 3

Extractable Carbon Chain

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU6-1A
 Moisture:
 14%
 Prepared:
 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-007
 Batch#:
 273267
 Prep:
 EPA 3580

Matrix:SoilSampled:08/25/21Analysis:EPA 8015MBasis:dryReceived:08/27/21Analyst:MES

 Analyte
 Result
 RL
 Units

 DRO C10-C28
 ND
 23
 mg/Kg

 RRO C28-C44
 ND
 47
 mg/Kg

 Surrogate
 %REC
 Limits

 n-Triacontane
 94
 70-130

 Field ID:
 3048-DU6-2A
 Moisture:
 11%
 Prepared:
 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-008
 Batch#:
 273267
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/25/21
 Analysis:
 EPA 8015M

Basis: dry Received: 08/27/21 Analyst: MES

 Analyte
 Result
 RL
 Units

 DRO C10-C28
 ND
 22
 mg/Kg

 RRO C28-C44
 ND
 45
 mg/Kg

 Surrogate
 %REC
 Limits

n-Triacontane 95 70-130

Type: BLANK Batch#: 273267 Analysis: EPA 8015M

 Lab ID:
 QC941823
 Prepared:
 09/02/21
 Analyst:
 MES

 Matrix:
 Soil
 Analyzed:
 09/02/21

Diln Fac: 1.000 **Prep:** EPA 3580

RL Units **Analyte** Result DRO C10-C28 ND 20 mg/Kg RRO C28-C44 ND 40 mg/Kg Surrogate %REC Limits n-Triacontane 95 70-130

Legend

ND: Not Detected

RL: Reporting Limit

Extractable Carbon Chain: Batch QC

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BS Batch#: 273267

Analysis: EPA 8015M

Lab ID: QC941824

Analyst: MES

Analyst: MES

Matrix: Soil

Prepared: 09/02/21 **Analyzed:** 09/02/21

Prep: EPA 3580

Diln Fac: 1.000

Analyte	Spiked	Result	%REC	Limits	Units
DRO C10-C28	500.0	420.9	84	76-122	mg/Kg
Surrogate			%REC		Limits
n-Triacontane			93		70-130

Type: BSD Batch#: 273267 Analysis: EPA 8015M

Lab ID: QC941825 **Prepared:** 09/02/21 Matrix: Soil

Analyzed: 09/02/21

Diln Fac: 1.000

Prep: EPA 3580

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
DRO C10-C28	500.0	118.9	24 *	76-122	mg/Kg	112 *	20
Surrogate				%RE	С	Limits	
n-Triacontane				9	8	70-130	

Legend

*: Value is outside QC limits RPD: Relative Percent Difference

1 of 1

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU2-1A **Diln Fac:** 200.0 **Analyzed:** 09/02/21 **Lab ID:** 449770-001 Batch#: 273303 Prep: EPA 3550C

Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/23/21 Basis: dry **Received:** 08/27/21 Analyst: DJL

Moisture: 11% **Prepared:** 09/02/21

Analyte	Result	RL	Units
Carbazole	ND	37,000	ug/Kg
1-Methylnaphthalene	ND	37,000	ug/Kg
Pyridine	ND	37,000	ug/Kg
N-Nitrosodimethylamine	ND	37,000	ug/Kg
Phenol	ND	37,000	ug/Kg
Aniline	ND	37,000	ug/Kg
bis(2-Chloroethyl)ether	ND	180,000	ug/Kg
2-Chlorophenol	ND	37,000	ug/Kg
1,3-Dichlorobenzene	ND	37,000	ug/Kg
1,4-Dichlorobenzene	ND	37,000	ug/Kg
Benzyl alcohol	ND	37,000	ug/Kg
1,2-Dichlorobenzene	ND	37,000	ug/Kg
2-Methylphenol	ND	37,000	ug/Kg
bis(2-Chloroisopropyl) ether	ND	37,000	ug/Kg
3-,4-Methylphenol	ND	60,000	ug/Kg
N-Nitroso-di-n-propylamine	ND	37,000	ug/Kg
Hexachloroethane	ND	37,000	ug/Kg
Nitrobenzene	ND	180,000	ug/Kg
Isophorone	ND	37,000	ug/Kg
2-Nitrophenol	ND	37,000	ug/Kg
2,4-Dimethylphenol	ND	37,000	ug/Kg
Benzoic acid	ND	180,000	ug/Kg
pis(2-Chloroethoxy)methane	ND	37,000	ug/Kg
2,4-Dichlorophenol	ND	37,000	ug/Kg
1,2,4-Trichlorobenzene	ND	37,000	ug/Kg
Naphthalene	ND	37,000	ug/Kg
4-Chloroaniline	ND	37,000	ug/Kg
Hexachlorobutadiene	ND	37,000	ug/Kg
4-Chloro-3-methylphenol	ND	37,000	ug/Kg
2-Methylnaphthalene	ND	37,000	ug/Kg
Hexachlorocyclopentadiene	ND	180,000	ug/Kg
2,4,6-Trichlorophenol	ND	37,000	ug/Kg
2,4,5-Trichlorophenol	ND	37,000	ug/Kg
2-Chloronaphthalene	ND	37,000	ug/Kg
2-Nitroaniline	ND	37,000	ug/Kg
Dimethylphthalate	ND	37,000	ug/Kg
Acenaphthylene	ND	37,000	ug/Kg
2,6-Dinitrotoluene	ND	37,000	ug/Kg
3-Nitroaniline	ND	37,000	ug/Kg
Acenaphthene	ND	37,000	ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Antirophenol ND 37,000 ug/Kg ug/Kg ug/kg 24-Dinilitotoluene ND 37,000 ug/Kg 25-EM 25-E	Analyte	Result	RL	Units
Dibenzoluran ND 37,000 ug/Kg 2,4-Dinitrotoluene ND 37,000 ug/Kg Dicietylphthalate ND 37,000 ug/Kg Pluorene ND 37,000 ug/Kg 4-Chiorophenyl-phenylether ND 37,000 ug/Kg 4-Ritoroaliline ND 37,000 ug/Kg 4-Ritorosodiphenylamine ND 37,000 ug/Kg 1-L2-diphenylhydrazinic (as azobenzene) ND 37,000 ug/Kg 1-Eromophenyl-phenylether ND 37,000 ug/Kg 1-Eromophenyl-phenylether ND 37,000 ug/Kg 1-Eromophenyl-phenylether ND 37,000 ug/Kg 1-Eromophenyl-phenylether ND 37,000 ug/Kg Pentachiorophenzene ND 37,000 ug/Kg Pentachiorophenzene ND 37,000 ug/Kg Pentachiorophenzene ND 37,000 ug/Kg Di-nebutylphthalate ND 37,000 ug/Kg Benzo(a)anthracene	2,4-Dinitrophenol	ND	180,000	ug/Kg
2.4 - Dinitrotoluene ND 37,000 ug/Kg Diethylphthalate ND 37,000 ug/Kg 1-Chlorophenyl-phenylether ND 37,000 ug/Kg 4-Nitroaniline ND 37,000 ug/Kg 4-Nitroaniline ND 37,000 ug/Kg 4,8-Dinitro-2-methylphenol ND 37,000 ug/Kg 4,2-diphenylhydrazine (as azobenzene) ND 37,000 ug/Kg 4-Bromophenyl-phenylether ND 37,000 ug/Kg 4-Bromophenyl-phenylether ND 37,000 ug/Kg 4-Eromophenyl-phenylether ND 37,000 ug/Kg 4-Eromophenyl-phenylether ND 37,000 ug/Kg 2-brentachlorophenol ND 37,000 ug/Kg 2-bren	4-Nitrophenol	ND	37,000	ug/Kg
Deletylphthalate ND 37,000 ug/kg 4,6-Chlorophenyl-phenylether ND 37,000 ug/kg 4,6-Chlorophenyl-phenylether ND 37,000 ug/kg 4,6-Chlorophenyl-phenylether ND 37,000 ug/kg 4,6-Chlorithro-2-methylphenol ND 37,000 ug/kg 4,6-Chlorithro-2-methylphenol ND 37,000 ug/kg 4,6-Chlorophenyl-phenylether ND 37,000 ug/kg 4,6-Chlorophenyl-phenyl-phenylether ND 37,000 ug/kg 4,6-Chlorophenyl-pheny	Dibenzofuran	ND	37,000	ug/Kg
Fluorene ND 37,000 ug/kg -Chlorophenyl-phenylether ND 37,000 ug/kg -Chlorophenyl-phenyl-phenylether ND 37,000 ug/kg -Chlorophenyl-phenyl-phenylether ND 37,000 ug/kg -Chlorophenyl-phen	2,4-Dinitrotoluene	ND	37,000	ug/Kg
A-Chlorophenyl-phenylether	Diethylphthalate	ND	37,000	ug/Kg
A-Nitroaniline ND 37,000 ug/kg	Fluorene	ND	37,000	ug/Kg
4,6-Dinitro-2-methylphenol ND 37,000 ug/kg N-Nitrosodiphenylamine ND 37,000 ug/kg 1,2-diphenylhydrazine (as azobenzene) ND 37,000 ug/kg 4-Bromophenyl-phenylether ND 37,000 ug/kg 2-etachlorobenzene ND 37,000 ug/kg 2-entachlorophenol ND 37,000 ug/kg 2-henathrene ND 37,000 ug/kg 3-hen-butylphthalate ND 37,000 ug/kg 2-iuoranthene ND 37,000 ug/kg 3-chylphthalate ND 37,000 ug/kg 3-gyrene ND 37,000 ug/kg 3-yolichlorobenzidine ND 37,000 ug/kg 3-yolicylphthalate ND 37,000 ug/kg 2-nysene ND 37,000 ug/kg 3-yolicylphthylphthalate ND 37,000 ug/kg 2-nysene ND 37,000 ug/kg 2-nysene ND 37,000 ug/kg 2-nocitylphthalate ND 37,000 ug/kg <td>4-Chlorophenyl-phenylether</td> <td>ND</td> <td>37,000</td> <td>ug/Kg</td>	4-Chlorophenyl-phenylether	ND	37,000	ug/Kg
N	4-Nitroaniline	ND	37,000	ug/Kg
	4,6-Dinitro-2-methylphenol	ND	37,000	ug/Kg
A-Bromophenyl-phenylether ND 37,000 ug/Kg -Bertachlorophenol ND 180,000 ug/Kg -Bertachlorophenol ND 37,000 ug/Kg -Bertachloro	N-Nitrosodiphenylamine	ND	37,000	ug/Kg
Pertachlorobenzene ND 37,000 ug/Kg Pertachlorophenol ND 180,000 ug/Kg ND 180,000 ug/Kg ND 37,000 ug/Kg	1,2-diphenylhydrazine (as azobenzene)	ND	37,000	ug/Kg
Pentachlorophenol ND 180,000 ug/Kg Phenanthrene ND 37,000 ug/Kg Anthracene ND 37,000 ug/Kg Di-n-butylphthalate ND 37,000 ug/Kg Pluoranthene ND 37,000 ug/Kg Benzidine ND 180,000 ug/Kg Pyrene ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg Di-n-octylphthalate ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg <	4-Bromophenyl-phenylether	ND	37,000	ug/Kg
Pentachlorophenol ND 180,000 ug/Kg Phenanthrene ND 37,000 ug/Kg Anthracene ND 37,000 ug/Kg Di-n-butylphthalate ND 37,000 ug/Kg Eluoranthene ND 37,000 ug/Kg Benzidine ND 37,000 ug/Kg Pyrene ND 37,000 ug/Kg Butylbenzylphthalate ND 37,000 ug/Kg Banzo(a)anthracene ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg Di-n-octylphthalate ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(a)pyrene	Hexachlorobenzene	ND	37,000	ug/Kg
Phenanthrene ND 37,000 ug/Kg Anthracene ND 37,000 ug/Kg Di-n-butylphthalate ND 37,000 ug/Kg Fluoranthene ND 37,000 ug/Kg Benzidine ND 37,000 ug/Kg Byrene ND 37,000 ug/Kg Byrene ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 37,000 ug/Kg Benzo(a)anthracene ND 37,000 ug/Kg Benzo(b)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg	Pentachlorophenol	ND	180,000	
Anthracene ND 37,000 ug/Kg Di-n-butylphthalate ND 37,000 ug/Kg Fluoranthene ND 37,000 ug/Kg Benzidine ND 180,000 ug/Kg Pyrene ND 37,000 ug/Kg Butylbenzylphthalate ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg Di-nyene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg	Phenanthrene	ND	37,000	
Di-n-butylphthalate ND 37,000 ug/kg Fluoranthene ND 37,000 ug/kg Benzidine ND 180,000 ug/kg Pyrene ND 37,000 ug/kg Butylbenzylphthalate ND 37,000 ug/kg Benzo(a)anthracene ND 37,000 ug/kg Chrysene ND 37,000 ug/kg Chro-cytlphthalate ND 37,000 ug	Anthracene	ND	37,000	
Fluoranthene ND 37,000 ug/Kg 3	Di-n-butylphthalate	ND	37,000	
Benzidine ND 180,000 ug/kg Pyrene ND 37,000 ug/kg Butylbenzylphthalate ND 37,000 ug/kg 3,3'-Dichlorobenzidine ND 180,000 ug/kg Benzo(a)anthracene ND 37,000 ug/kg Chrysene ND 37,000 ug/kg Di-n-octylphthalate ND 37,000 ug/kg Benzo(b)fluoranthene ND 37,000 ug/kg Benzo(k)fluoranthene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg Benzo(g,h,i)perylene ND 37,000 ug/kg Benzo(g,h,i)perylene ND 37,000 ug/kg Benzo(g,h,i)perylene ND 37,000 ug/kg Benzo(g,h,i)perylene DO 39-120 <t< td=""><td>Fluoranthene</td><td>ND</td><td></td><td></td></t<>	Fluoranthene	ND		
Pyrene ND 37,000 ug/kg Butylbenzylphthalate ND 37,000 ug/kg 3,3'-Dichlorobenzidine ND 180,000 ug/kg Benzo(a)anthracene ND 37,000 ug/kg Chrysene ND 37,000 ug/kg Dis(2-Ethylhexyl)phthalate ND 37,000 ug/kg Disc(2-Ethylhexyl)phthalate ND 37,000 ug/kg Disc(2-Ethylhexyl)phthalate ND 37,000 ug/kg Disc(2-Ethylhexyl)phthalate ND 37,000 ug/kg Benzo(b)fluoranthene ND 37,000 ug/kg Benzo(b)fluoranthene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg Dibenz(a,h)anthracene ND 37,000 ug/kg Benzo(g,h,i)perylene ND 37,000 ug/kg Benzo(g,h,i)perylene ND 37,000 ug/kg Benzo(g,h,i)perylene DO	Benzidine	ND		
Butylbenzylphthalate ND 37,000 ug/Kg 3,3'-Dichlorobenzidine ND 180,000 ug/Kg Benzo(a)anthracene ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg Dis(2-Ethylhexyl)phthalate ND 37,000 ug/Kg Di-n-octylphthalate ND 37,000 ug/Kg Benzo(b)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(a)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene DO 30-120 Phenol-d6 DO 30-120 Phenol-d6 DO 32-120 Nitrobenzene-d5	Pyrene	ND		
3,3'-Dichlorobenzidine ND 180,000 ug/Kg Benzo(a)anthracene ND 37,000 ug/Kg Chrysene ND 37,000 ug/Kg bis(2-Ethylhexyl)phthalate ND 37,000 ug/Kg Bis(2-Cythylhexyl)phthalate ND 37,000 u	Butylbenzylphthalate	ND	37,000	
Benzo(a)anthracene ND 37,000 ug/Kg ug/Kg Chrysene ND 37,000 ug/Kg ug/Kg Dis(2-Ethylhexyl)phthalate ND 37,000 ug/Kg Di-n-octylphthalate ND 37,000 ug/Kg Benzo(b)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(a)pyrene ND 37,000 ug/Kg Indeno(1,2,3-cd)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Benzole ND 37,000 ug/Kg		ND	180,000	
Chrysene ND 37,000 ug/Kg Dis(2-Ethylhexyl)phthalate ND 37,000 ug/Kg Di-n-octylphthalate ND 37,000 ug/Kg Benzo(b)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(a)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Benzole ND <td></td> <td>ND</td> <td></td> <td></td>		ND		
bis(2-Ethylhexyl)phthalate ND 37,000 ug/Kg Di-n-octylphthalate ND 37,000 ug/Kg Benzo(b)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(a)pyrene ND 37,000 ug/Kg Indeno(1,2,3-cd)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Burrogate %REC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120	Chrysene	ND	37,000	
Di-n-octylphthalate ND 37,000 ug/kg Benzo(b)fluoranthene ND 37,000 ug/kg Benzo(k)fluoranthene ND 37,000 ug/kg Benzo(a)pyrene ND 37,000 ug/kg ndeno(1,2,3-cd)pyrene ND 37,000 ug/kg Dibenz(a,h)anthracene ND 37,000 ug/kg Benzo(g,h,i)perylene ND 37,000 ug/kg Benzotes *REC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120		ND	37,000	
Benzo(b)fluoranthene ND 37,000 ug/Kg Benzo(k)fluoranthene ND 37,000 ug/Kg Benzo(a)pyrene ND 37,000 ug/Kg Indeno(1,2,3-cd)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Burrogate **REC *Limit* 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120		ND		
Benzo (k) fluoranthene ND 37,000 ug/Kg Benzo (a) pyrene ND 37,000 ug/Kg ndeno (1,2,3-cd) pyrene ND 37,000 ug/Kg Dibenz (a,h) anthracene ND 37,000 ug/Kg Benzo (g,h,i) perylene ND 37,000 ug/Kg Surrogate **REC *Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120	• •	ND		
Benzo(a)pyrene ND 37,000 ug/Kg ndeno(1,2,3-cd)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Surrogate KREC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120		ND	37,000	
Indeno(1,2,3-cd)pyrene ND 37,000 ug/Kg Dibenz(a,h)anthracene ND 37,000 ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg Surrogate REC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120		ND		
Dibenz(a,h)anthracene ND 37,000 ug/Kg ug/Kg Benzo(g,h,i)perylene ND 37,000 ug/Kg ug/Kg Surrogate %REC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120				
Benzo (g,h,i) perylene ND 37,000 ug/Kg Surrogate %REC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2-,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120				
Surrogate %REC Limits 2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120		ND		
2-Fluorophenol DO 29-120 Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120		%REC	Limit	ts
Phenol-d6 DO 30-120 2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120	-			
2,4,6-Tribromophenol DO 32-120 Nitrobenzene-d5 DO 33-120				
Nitrobenzene-d5 DO 33-120				
	•			
	2-Fluorobiphenyl	DO		

Terphenyl-d14 Legend DO: Diluted Out ND: Not Detected

RL: Reporting Limit

DO

44-125

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU2-2A
 Diln Fac:
 1.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-002
 Batch#:
 273303
 Prep:
 EPA 3550C

 Matrix:
 Soil
 Sampled:
 08/23/21
 Analysis:
 EPA 8270C

Basis: dry Received: 08/27/21 Analyst: DJL

Moisture: 16% Prepared: 09/02/21

Analyte	Result	RL	Units
Carbazole	ND	200	ug/Kg
1-Methylnaphthalene	ND	200	ug/Kg
Pyridine	ND	200	ug/Kg
N-Nitrosodimethylamine	ND	200	ug/Kg
Phenol	ND	200	ug/Kg
Aniline	ND	200	ug/Kg
bis(2-Chloroethyl)ether	ND	950	ug/Kg
2-Chlorophenol	ND	200	ug/Kg
1,3-Dichlorobenzene	ND	200	ug/Kg
1,4-Dichlorobenzene	ND	200	ug/Kg
Benzyl alcohol	ND	200	ug/Kg
1,2-Dichlorobenzene	ND	200	ug/Kg
2-Methylphenol	ND	200	ug/Kg
ois(2-Chloroisopropyl) ether	ND	200	ug/Kg
3-,4-Methylphenol	ND	320	ug/Kg
N-Nitroso-di-n-propylamine	ND	200	ug/Kg
Hexachloroethane	ND	200	ug/Kg
Nitrobenzene	ND	950	ug/Kg
Isophorone	ND	200	ug/Kg
2-Nitrophenol	ND	200	ug/Kg
2,4-Dimethylphenol	ND	200	ug/Kg
Benzoic acid	ND	950	ug/Kg
pis(2-Chloroethoxy)methane	ND	200	ug/Kg
2,4-Dichlorophenol	ND	200	ug/Kg
1,2,4-Trichlorobenzene	ND	200	ug/Kg
Naphthalene	ND	200	ug/Kg
4-Chloroaniline	ND	200	ug/Kg
Hexachlorobutadiene	ND	200	ug/Kg
4-Chloro-3-methylphenol	ND	200	ug/Kg
2-Methylnaphthalene	ND	200	ug/Kg
Hexachlorocyclopentadiene	ND	950	ug/Kg
2,4,6-Trichlorophenol	ND	200	ug/Kg
2,4,5-Trichlorophenol	ND	200	ug/Kg
2-Chloronaphthalene	ND	200	ug/Kg
2-Nitroaniline	ND	200	ug/Kg
Dimethylphthalate	ND	200	ug/Kg
Acenaphthylene	ND	200	ug/Kg
2,6-Dinitrotoluene	ND	200	ug/Kg
3-Nitroaniline	ND	200	ug/Kg
Acenaphthene	ND	200	ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Cheffer my cangines item at 1888 states			
Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	950	ug/Kg
4-Nitrophenol	ND	200	ug/Kg
Dibenzofuran	ND	200	ug/Kg
2,4-Dinitrotoluene	ND	200	ug/Kg
Diethylphthalate	ND	200	ug/Kg
Fluorene	ND	200	ug/Kg
4-Chlorophenyl-phenylether	ND	200	ug/Kg
4-Nitroaniline	ND	200	ug/Kg
4,6-Dinitro-2-methylphenol	ND	200	ug/Kg
N-Nitrosodiphenylamine	ND	200	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	200	ug/Kg
4-Bromophenyl-phenylether	ND	200	ug/Kg
Hexachlorobenzene	ND	200	ug/Kg
Pentachlorophenol	ND	950	ug/Kg
Phenanthrene	ND	200	ug/Kg
Anthracene	ND	200	ug/Kg
Di-n-butylphthalate	ND	200	ug/Kg
Fluoranthene	ND	200	ug/Kg
Benzidine	ND	950	ug/Kg
Pyrene	ND	200	ug/Kg
Butylbenzylphthalate	ND	200	ug/Kg
3,3'-Dichlorobenzidine	ND	950	ug/Kg
Benzo(a)anthracene	ND	200	ug/Kg
Chrysene	ND	200	ug/Kg
pis(2-Ethylhexyl)phthalate	ND	200	ug/Kg
Di-n-octylphthalate	ND	200	ug/Kg
Benzo(b)fluoranthene	ND	200	ug/Kg
Benzo(k)fluoranthene	ND	200	ug/Kg
Benzo(a)pyrene	ND	200	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	200	ug/Kg
Dibenz(a,h)anthracene	ND	200	ug/Kg
Benzo(g,h,i)perylene	ND	200	ug/Kg

Surrogate	%REC	Limits	
2-Fluorophenol	85	29-120	
Phenol-d6	91	30-120	
2,4,6-Tribromophenol	83	32-120	
Nitrobenzene-d5	82	33-120	
2-Fluorobiphenyl	87	39-120	
Terphenyl-d14	97	44-125	

Legend ND: Not Detected RL: Reporting Limit

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU7-1A
 Diln Fac:
 4.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-003
 Batch#:
 273303
 Prep:
 EPA 3550C

Matrix: Soil Sampled: 08/25/21 Analysis: EPA 8270C

Basis: dry Received: 08/27/21 Analyst: DJL

Moisture: 15% Prepared: 09/02/21

Analyte	Result	RL	Units
Carbazole	ND ND	790	ug/Kg
I-Methylnaphthalene	ND	790	ug/Kg
Pyridine	ND	790	ug/Kg
N-Nitrosodimethylamine	ND	790	ug/Kg
Phenol	ND	790	ug/Kg
Aniline	ND	790	ug/Kg
pis(2-Chloroethyl)ether		,800	ug/Kg
2-Chlorophenol	ND	790	ug/Kg
I ,3-Dichlorobenzene	ND	790	ug/Kg
1,4-Dichlorobenzene	ND	790	ug/Kg
Benzyl alcohol	ND	790	ug/Kg
I ,2-Dichlorobenzene	ND	790	ug/Kg
2-Methylphenol	ND	790	ug/Kg
ois(2-Chloroisopropyl) ether	ND	790	ug/Kg
3-,4-Methylphenol		,300	ug/Kg
N-Nitroso-di-n-propylamine	ND	790	ug/Kg
Hexachloroethane	ND	790	ug/Kg
Nitrobenzene		,800	ug/Kg
sophorone	ND	790	ug/Kg
2-Nitrophenol	ND	790	ug/Kg
2,4-Dimethylphenol	ND	790	ug/Kg
Benzoic acid		,800	ug/Kg
ois(2-Chloroethoxy)methane	ND	790	ug/Kg
2,4-Dichlorophenol	ND	790	ug/Kg
1,2,4-Trichlorobenzene	ND	790	ug/Kg
Naphthalene	ND	790	ug/Kg
4-Chloroaniline	ND	790	ug/Kg
Hexachlorobutadiene	ND	790	ug/Kg
4-Chloro-3-methylphenol	ND	790	ug/Kg
2-Methylnaphthalene	ND	790	ug/Kg
Hexachlorocyclopentadiene	ND 3	,800	ug/Kg
2,4,6-Trichlorophenol	ND	790	ug/Kg
2,4,5-Trichlorophenol	ND	790	ug/Kg
2-Chloronaphthalene	ND	790	ug/Kg
2-Nitroaniline	ND	790	ug/Kg
Dimethylphthalate	ND	790	ug/Kg
Acenaphthylene	ND	790	ug/Kg
2,6-Dinitrotoluene	ND	790	ug/Kg
3-Nitroaniline	ND	790	ug/Kg
Acenaphthene	ND	790	ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	3,800	ug/Kg
4-Nitrophenol	ND	790	ug/Kg
Dibenzofuran	ND	790	ug/Kg
2,4-Dinitrotoluene	ND	790	ug/Kg
Diethylphthalate	ND	790	ug/Kg
Fluorene	ND	790	ug/Kg
4-Chlorophenyl-phenylether	ND	790	ug/Kg
4-Nitroaniline	ND	790	ug/Kg
4,6-Dinitro-2-methylphenol	ND	790	ug/Kg
N-Nitrosodiphenylamine	ND	790	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	790	ug/Kg
4-Bromophenyl-phenylether	ND	790	ug/Kg
Hexachlorobenzene	ND	790	ug/Kg
Pentachlorophenol	ND	3,800	ug/Kg
Phenanthrene	ND	790	ug/Kg
Anthracene	ND	790	ug/Kg
Di-n-butylphthalate	ND	790	ug/Kg
Fluoranthene	ND	790	ug/Kg
Benzidine	ND	3,800	ug/Kg
Pyrene	ND	790	ug/Kg
Butylbenzylphthalate	ND	790	ug/Kg
3,3'-Dichlorobenzidine	ND	3,800	ug/Kg
Benzo(a)anthracene	ND	790	ug/Kg
Chrysene	ND	790	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	790	ug/Kg
Di-n-octylphthalate	ND	790	ug/Kg
Benzo(b)fluoranthene	ND	790	ug/Kg
Benzo(k)fluoranthene	ND	790	ug/Kg
Benzo(a)pyrene	ND	790	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	790	ug/Kg
Dibenz(a,h)anthracene	ND	790	ug/Kg
Benzo(g,h,i)perylene	ND	790	ug/Kg
Surrogate	%REC	Limits	
2-Fluorophenol	89	29-1	20
Phenol-d6	95	30-120	
2,4,6-Tribromophenol	84	32-1	20

Surrogate	%REC	Limits	
2-Fluorophenol	89	29-120	
Phenol-d6	95	30-120	
2,4,6-Tribromophenol	84	32-120	
Nitrobenzene-d5	82	33-120	
2-Fluorobiphenyl	91	39-120	
Terphenyl-d14	98	44-125	

Legend ND: Not Detected RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU7-1B **Diln Fac:** 10.00 **Analyzed:** 09/02/21

Batch#: 273303 **Lab ID:** 449770-004 Prep: EPA 3550C Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/25/21

Basis: dry **Received:** 08/27/21 Analyst: HQN

Moisture: 14% Prepared: 09/02/21

Analyte	Result	RL	Units
Carbazole	ND	1,900	ug/Kg
1-Methylnaphthalene	ND	1,900	ug/Kg
Pyridine	ND	1,900	ug/Kg
N-Nitrosodimethylamine	ND	1,900	ug/Kg
Phenol	ND	1,900	ug/Kg
Aniline	ND	1,900	ug/Kg
bis(2-Chloroethyl)ether	ND	9,300	ug/Kg
2-Chlorophenol	ND	1,900	ug/Kg
1,3-Dichlorobenzene	ND	1,900	ug/Kg
1,4-Dichlorobenzene	ND	1,900	ug/Kg
Benzyl alcohol	ND	1,900	ug/Kg
1,2-Dichlorobenzene	ND	1,900	ug/Kg
2-Methylphenol	ND	1,900	ug/Kg
bis(2-Chloroisopropyl) ether	ND	1,900	ug/Kg
3-,4-Methylphenol	ND	3,100	ug/Kg
N-Nitroso-di-n-propylamine	ND	1,900	ug/Kg
Hexachloroethane	ND	1,900	ug/Kg
Nitrobenzene	ND	9,300	ug/Kg
Isophorone	ND	1,900	ug/Kg
2-Nitrophenol	ND	1,900	ug/Kg
2,4-Dimethylphenol	ND	1,900	ug/Kg
Benzoic acid	ND	9,300	ug/Kg
bis(2-Chloroethoxy)methane	ND	1,900	ug/Kg
2,4-Dichlorophenol	ND	1,900	ug/Kg
1,2,4-Trichlorobenzene	ND	1,900	ug/Kg
Naphthalene	ND	1,900	ug/Kg
4-Chloroaniline	ND	1,900	ug/Kg
Hexachlorobutadiene	ND	1,900	ug/Kg
4-Chloro-3-methylphenol	ND	1,900	ug/Kg
2-Methylnaphthalene	ND	1,900	ug/Kg
Hexachlorocyclopentadiene	ND	9,300	ug/Kg
2,4,6-Trichlorophenol	ND	1,900	ug/Kg
2,4,5-Trichlorophenol	ND	1,900	ug/Kg
2-Chloronaphthalene	ND	1,900	ug/Kg
2-Nitroaniline	ND	1,900	ug/Kg
Dimethylphthalate	ND	1,900	ug/Kg
Acenaphthylene	ND	1,900	ug/Kg
2,6-Dinitrotoluene	ND	1,900	ug/Kg
3-Nitroaniline	ND ND	1,900	ug/Kg ug/Kg
Acenaphthene	ND ND	1,900	ug/Kg ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	9,300	ug/Kg
4-Nitrophenol	ND	1,900	ug/Kg
Dibenzofuran	ND	1,900	ug/Kg
2,4-Dinitrotoluene	ND	1,900	ug/Kg
Diethylphthalate	ND	1,900	ug/Kg
Fluorene	ND	1,900	ug/Kg
4-Chlorophenyl-phenylether	ND	1,900	ug/Kg
4-Nitroaniline	ND	1,900	ug/Kg
4,6-Dinitro-2-methylphenol	ND	1,900	ug/Kg
N-Nitrosodiphenylamine	ND	1,900	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	1,900	ug/Kg
4-Bromophenyl-phenylether	ND	1,900	ug/Kg
Hexachlorobenzene	ND	1,900	ug/Kg
Pentachlorophenol	ND	9,300	ug/Kg
Phenanthrene	ND	1,900	ug/Kg
Anthracene	ND	1,900	ug/Kg
Di-n-butylphthalate	ND	1,900	ug/Kg
Fluoranthene	ND	1,900	ug/Kg
Benzidine	ND	9,300	ug/Kg
Pyrene	ND	1,900	ug/Kg
Butylbenzylphthalate	ND	1,900	ug/Kg
3,3'-Dichlorobenzidine	ND	9,300	ug/Kg
Benzo(a)anthracene	ND	1,900	ug/Kg
Chrysene	ND	1,900	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	1,900	ug/Kg
Di-n-octylphthalate	ND	1,900	ug/Kg
Benzo(b)fluoranthene	ND	1,900	ug/Kg
Benzo(k)fluoranthene	ND	1,900	ug/Kg
Benzo(a)pyrene	ND	1,900	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	1,900	ug/Kg
Dibenz(a,h)anthracene	ND	1,900	ug/Kg
Benzo(g,h,i)perylene	ND	1,900	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	85	29-1	20
Phenol-d6	94	30-1	20
O. A. C. Tvila va mana la anal	00	00.4	00

Surrogate	%REC	Limits
2-Fluorophenol	85	29-120
Phenol-d6	94	30-120
2,4,6-Tribromophenol	83	32-120
Nitrobenzene-d5	81	33-120
2-Fluorobiphenyl	80	39-120
Terphenyl-d14	89	44-125

Legend ND: Not Detected RL: Reporting Limit

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU7-1C
 Diln Fac:
 5.000
 Analyzed:
 09/02/21

 Lab ID:
 449770-005
 Batch#:
 273303
 Prep:
 EPA 3550C

 Matrix:
 Soil
 Sampled:
 08/25/21
 Analysis:
 EPA 8270C

Basis: dry Received: 08/27/21 Analyst: HQN

Moisture: 14% Prepared: 09/02/21

Analyte	Result	RL	Units
Carbazole		980	ug/Kg
1-Methylnaphthalene		980	ug/Kg
Pyridine		980	ug/Kg
N-Nitrosodimethylamine		980	ug/Kg
Phenol		980	ug/Kg
Aniline		980	ug/Kg
pis(2-Chloroethyl)ether		,700	ug/Kg
2-Chlorophenol		980	ug/Kg
1,3-Dichlorobenzene	ND	980	ug/Kg
1,4-Dichlorobenzene		980	ug/Kg
Benzyl alcohol		980	ug/Kg
1,2-Dichlorobenzene		980	ug/Kg
2-Methylphenol		980	ug/Kg
bis(2-Chloroisopropyl) ether		980	ug/Kg
3-,4-Methylphenol	ND 1	,600	ug/Kg
N-Nitroso-di-n-propylamine		980	ug/Kg
Hexachloroethane	ND	980	ug/Kg
Nitrobenzene		,700	ug/Kg
sophorone		980	ug/Kg
2-Nitrophenol	ND	980	ug/Kg
2,4-Dimethylphenol	ND	980	ug/Kg
Benzoic acid	ND 4	,700	ug/Kg
pis(2-Chloroethoxy)methane	ND	980	ug/Kg
2,4-Dichlorophenol	ND	980	ug/Kg
1,2,4-Trichlorobenzene	ND	980	ug/Kg
Naphthalene	ND	980	ug/Kg
4-Chloroaniline	ND	980	ug/Kg
Hexachlorobutadiene	ND	980	ug/Kg
4-Chloro-3-methylphenol	ND	980	ug/Kg
2-Methylnaphthalene	ND	980	ug/Kg
Hexachlorocyclopentadiene	ND 4	,700	ug/Kg
2,4,6-Trichlorophenol	ND	980	ug/Kg
2,4,5-Trichlorophenol	ND	980	ug/Kg
2-Chloronaphthalene		980	ug/Kg
2-Nitroaniline	ND	980	ug/Kg
Dimethylphthalate	ND	980	ug/Kg
Acenaphthylene	ND	980	ug/Kg
2,6-Dinitrotoluene	ND	980	ug/Kg
3-Nitroaniline	ND	980	ug/Kg
Acenaphthene	ND	980	ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	4,700	ug/Kg
4-Nitrophenol	ND	980	ug/Kg
Dibenzofuran	ND	980	ug/Kg
2,4-Dinitrotoluene	ND	980	ug/Kg
Diethylphthalate	ND	980	ug/Kg
Fluorene	ND	980	ug/Kg
4-Chlorophenyl-phenylether	ND	980	ug/Kg
4-Nitroaniline	ND	980	ug/Kg
4,6-Dinitro-2-methylphenol	ND	980	ug/Kg
N-Nitrosodiphenylamine	ND	980	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	980	ug/Kg
4-Bromophenyl-phenylether	ND	980	ug/Kg
Hexachlorobenzene	ND	980	ug/Kg
Pentachlorophenol	ND	4,700	ug/Kg
Phenanthrene	ND	980	ug/Kg
Anthracene	ND	980	ug/Kg
Di-n-butylphthalate	ND	980	ug/Kg
Fluoranthene	ND	980	ug/Kg
Benzidine	ND	4,700	ug/Kg
Pyrene	ND	980	ug/Kg
Butylbenzylphthalate	ND	980	ug/Kg
3,3'-Dichlorobenzidine	ND	4,700	ug/Kg
Benzo(a)anthracene	ND	980	ug/Kg
Chrysene	ND	980	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	980	ug/Kg
Di-n-octylphthalate	ND	980	ug/Kg
Benzo(b)fluoranthene	ND	980	ug/Kg
Benzo(k)fluoranthene	ND	980	ug/Kg
Benzo(a)pyrene	ND	980	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	980	ug/Kg
Dibenz(a,h)anthracene	ND	980	ug/Kg
Benzo(g,h,i)perylene	ND	980	ug/Kg
Surrogate	%REC	Limits	
2-Fluorophenol	81	29-1	20
Phenol-d6	93	30-1	20
2,4,6-Tribromophenol	86	32-1	20
Nitrohanzana-d5	78	33_1	20

Surrogate	%REC	Limits	
2-Fluorophenol	81	29-120	
Phenol-d6	93	30-120	
2,4,6-Tribromophenol	86	32-120	
Nitrobenzene-d5	78	33-120	
2-Fluorobiphenyl	76	39-120	
Terphenyl-d14	90	44-125	

Legend ND: Not Detected RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU7-2A **Analyzed:** 09/02/21 **Diln Fac:** 2.000

Lab ID: 449770-006 Batch#: 273303 Prep: EPA 3550C Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/25/21

Basis: dry **Received:** 08/27/21 Analyst: HQN

Moisture: 11% **Prepared:** 09/02/21

Analyte	Result	RL	Units
Carbazole	ND	370	ug/Kg
I-Methylnaphthalene	ND	370	ug/Kg
Pyridine	ND	370	ug/Kg
N-Nitrosodimethylamine	ND	370	ug/Kg
Phenol	ND	370	ug/Kg
Aniline	ND	370	ug/Kg
ois(2-Chloroethyl)ether	ND	1,800	ug/Kg
2-Chlorophenol	ND	370	ug/Kg
,3-Dichlorobenzene	ND	370	ug/Kg
,4-Dichlorobenzene	ND	370	ug/Kg
enzyl alcohol	ND	370	ug/Kg
,2-Dichlorobenzene	ND	370	ug/Kg
-Methylphenol	ND	370	ug/Kg
is(2-Chloroisopropyl) ether	ND	370	ug/Kg
-,4-Methylphenol	ND	600	ug/Kg
l-Nitroso-di-n-propylamine	ND	370	ug/Kg
lexachloroethane	ND	370	ug/Kg
litrobenzene	ND	1,800	ug/Kg
sophorone	ND	370	ug/Kg
-Nitrophenol	ND	370	ug/Kg
,4-Dimethylphenol	ND	370	ug/Kg
enzoic acid	ND	1,800	ug/Kg
is(2-Chloroethoxy)methane	ND	370	ug/Kg
,4-Dichlorophenol	ND	370	ug/Kg
,2,4-Trichlorobenzene	ND	370	ug/Kg
aphthalene	ND	370	ug/Kg
-Chloroaniline	ND	370	ug/Kg
lexachlorobutadiene	ND	370	ug/Kg
-Chloro-3-methylphenol	ND	370	ug/Kg
-Methylnaphthalene	ND	370	ug/Kg
lexachlorocyclopentadiene	ND	1,800	ug/Kg
,4,6-Trichlorophenol	ND	370	ug/Kg
,4,5-Trichlorophenol	ND	370	ug/Kg
-Chloronaphthalene	ND	370	ug/Kg
-Nitroaniline	ND	370	ug/Kg
pimethylphthalate	ND	370	ug/Kg
cenaphthylene	ND	370	ug/Kg
,6-Dinitrotoluene	ND	370	ug/Kg
-Nitroaniline	ND	370	ug/Kg
Acenaphthene	ND	370	ug/Kg

Lab #: 449770 Project#: 3048_2
Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	1,800	ug/Kg
4-Nitrophenol	ND	370	ug/Kg
Dibenzofuran	ND	370	ug/Kg
2,4-Dinitrotoluene	ND	370	ug/Kg
Diethylphthalate	ND	370	ug/Kg
Fluorene	ND	370	ug/Kg
4-Chlorophenyl-phenylether	ND	370	ug/Kg
4-Nitroaniline	ND	370	ug/Kg
4,6-Dinitro-2-methylphenol	ND	370	ug/Kg
N-Nitrosodiphenylamine	ND	370	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	370	ug/Kg
4-Bromophenyl-phenylether	ND	370	ug/Kg
Hexachlorobenzene	ND	370	ug/Kg
Pentachlorophenol	ND	1,800	ug/Kg
Phenanthrene	ND	370	ug/Kg
Anthracene	ND	370	ug/Kg
Di-n-butylphthalate	ND	370	ug/Kg
Fluoranthene	ND	370	ug/Kg
Benzidine	ND	1,800	ug/Kg
Pyrene	ND	370	ug/Kg
Butylbenzylphthalate	ND	370	ug/Kg
3,3'-Dichlorobenzidine	ND	1,800	ug/Kg
Benzo(a)anthracene	ND	370	ug/Kg
Chrysene	ND	370	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	370	ug/Kg
Di-n-octylphthalate	ND	370	ug/Kg
Benzo(b)fluoranthene	ND	370	ug/Kg
Benzo(k)fluoranthene	ND	370	ug/Kg
Benzo(a)pyrene	ND	370	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	370	ug/Kg
Dibenz(a,h)anthracene	ND	370	ug/Kg
Benzo(g,h,i)perylene	ND	370	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	89	29-1	20
Phenol-d6	98	30-1	20

Surrogate	%REC	Limits
2-Fluorophenol	89	29-120
Phenol-d6	98	30-120
2,4,6-Tribromophenol	101	32-120
Nitrobenzene-d5	89	33-120
2-Fluorobiphenyl	88	39-120
Terphenyl-d14	110	44-125

Legend

ND: Not Detected

RL: Reporting Limit

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU6-1A **Diln Fac:** 2.000 **Analyzed:** 09/02/21

 Lab ID:
 449770-007
 Batch#:
 273303
 Prep:
 EPA 3550C

 Matrix:
 Soil
 Sampled:
 08/25/21
 Analysis:
 EPA 8270C

Basis: dry Received: 08/27/21 Analyst: HQN

Moisture: 14% Prepared: 09/02/21

Analyte	Result	RL	Units
Carbazole	ND	390	ug/Kg
1-Methylnaphthalene	ND	390	ug/Kg
Pyridine	ND	390	ug/Kg
N-Nitrosodimethylamine	ND	390	ug/Kg
Phenol	ND	390	ug/Kg
Aniline	ND	390	ug/Kg
pis(2-Chloroethyl)ether	ND	1,800	ug/Kg
2-Chlorophenol	ND	390	ug/Kg
1,3-Dichlorobenzene	ND	390	ug/Kg
1,4-Dichlorobenzene	ND	390	ug/Kg
Benzyl alcohol	ND	390	ug/Kg
1,2-Dichlorobenzene	ND	390	ug/Kg
2-Methylphenol	ND	390	ug/Kg
bis(2-Chloroisopropyl) ether	ND	390	ug/Kg
3-,4-Methylphenol	ND	620	ug/Kg
N-Nitroso-di-n-propylamine	ND	390	ug/Kg
Hexachloroethane	ND	390	ug/Kg
Nitrobenzene	ND	1,800	ug/Kg
sophorone	ND	390	ug/Kg
2-Nitrophenol	ND	390	ug/Kg
2,4-Dimethylphenol	ND	390	ug/Kg
Benzoic acid	ND	1,800	ug/Kg
pis(2-Chloroethoxy)methane	ND	390	ug/Kg
2,4-Dichlorophenol	ND	390	ug/Kg
1,2,4-Trichlorobenzene	ND	390	ug/Kg
Naphthalene	ND	390	ug/Kg
4-Chloroaniline	ND	390	ug/Kg
Hexachlorobutadiene	ND	390	ug/Kg
4-Chloro-3-methylphenol	ND	390	ug/Kg
2-Methylnaphthalene	ND	390	ug/Kg
Hexachlorocyclopentadiene	ND	1,800	ug/Kg
2,4,6-Trichlorophenol	ND	390	ug/Kg
2,4,5-Trichlorophenol	ND	390	ug/Kg
2-Chloronaphthalene	ND	390	ug/Kg
2-Nitroaniline	ND	390	ug/Kg
Dimethylphthalate	ND	390	ug/Kg
Acenaphthylene	ND	390	ug/Kg
2,6-Dinitrotoluene	ND	390	ug/Kg
3-Nitroaniline	ND	390	ug/Kg
Acenaphthene	ND	390	ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	1,800	ug/Kg
4-Nitrophenol	ND	390	ug/Kg
Dibenzofuran	ND	390	ug/Kg
2,4-Dinitrotoluene	ND	390	ug/Kg
Diethylphthalate	ND	390	ug/Kg
Fluorene	ND	390	ug/Kg
4-Chlorophenyl-phenylether	ND	390	ug/Kg
4-Nitroaniline	ND	390	ug/Kg
4,6-Dinitro-2-methylphenol	ND	390	ug/Kg
N-Nitrosodiphenylamine	ND	390	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	390	ug/Kg
4-Bromophenyl-phenylether	ND	390	ug/Kg
Hexachlorobenzene	ND	390	ug/Kg
Pentachlorophenol	ND	1,800	ug/Kg
Phenanthrene	ND	390	ug/Kg
Anthracene	ND	390	ug/Kg
Di-n-butylphthalate	ND	390	ug/Kg
Fluoranthene	ND	390	ug/Kg
Benzidine	ND	1,800	ug/Kg
Pyrene	ND	390	ug/Kg
Butylbenzylphthalate	ND	390	ug/Kg
3,3'-Dichlorobenzidine	ND	1,800	ug/Kg
Benzo(a)anthracene	ND	390	ug/Kg
Chrysene	ND	390	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	390	ug/Kg
Di-n-octylphthalate	ND	390	ug/Kg
Benzo(b)fluoranthene	ND	390	ug/Kg
Benzo(k)fluoranthene	ND	390	ug/Kg
Benzo(a)pyrene	ND	390	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	390	ug/Kg
Dibenz(a,h)anthracene	ND	390	ug/Kg
Benzo(g,h,i)perylene	ND	390	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	114	29-1	20

Surrogate	%REC	Limits
2-Fluorophenol	114	29-120
Phenol-d6	125 *	30-120
2,4,6-Tribromophenol	118	32-120
Nitrobenzene-d5	107	33-120
2-Fluorobiphenyl	106	39-120
Terphenyl-d14	124	44-125

Legend

*: Value is outside QC limits

ND: Not Detected RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU6-2A **Diln Fac:** 2.000 **Analyzed:** 09/02/21

Lab ID: 449770-008 Batch#: 273303 Prep: EPA 3550C Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/25/21

Basis: dry **Received:** 08/27/21 Analyst: HQN

Moisture: 11% **Prepared:** 09/02/21

Analyte	Result	RL	Units
Carbazole	ND	370	ug/Kg
1-Methylnaphthalene	ND	370	ug/Kg
Pyridine	ND	370	ug/Kg
N-Nitrosodimethylamine	ND	370	ug/Kg
Phenol	ND	370	ug/Kg
Aniline	ND	370	ug/Kg
pis(2-Chloroethyl)ether	ND	1,800	ug/Kg
2-Chlorophenol	ND	370	ug/Kg
I,3-Dichlorobenzene	ND	370	ug/Kg
1,4-Dichlorobenzene	ND	370	ug/Kg
Benzyl alcohol	ND	370	ug/Kg
1,2-Dichlorobenzene	ND	370	ug/Kg
2-Methylphenol	ND	370	ug/Kg
pis(2-Chloroisopropyl) ether	ND	370	ug/Kg
3-,4-Methylphenol	ND	600	ug/Kg
N-Nitroso-di-n-propylamine	ND	370	ug/Kg
Hexachloroethane	ND	370	ug/Kg
Nitrobenzene	ND	1,800	ug/Kg
sophorone	ND	370	ug/Kg
2-Nitrophenol	ND	370	ug/Kg
2,4-Dimethylphenol	ND	370	ug/Kg
Benzoic acid	ND	1,800	ug/Kg
pis(2-Chloroethoxy)methane	ND	370	ug/Kg
2,4-Dichlorophenol	ND	370	ug/Kg
1,2,4-Trichlorobenzene	ND	370	ug/Kg
Naphthalene	ND	370	ug/Kg
4-Chloroaniline	ND	370	ug/Kg
Hexachlorobutadiene	ND	370	ug/Kg
4-Chloro-3-methylphenol	ND	370	ug/Kg
2-Methylnaphthalene	ND	370	ug/Kg
Hexachlorocyclopentadiene	ND	1,800	ug/Kg
2,4,6-Trichlorophenol	ND	370	ug/Kg
2,4,5-Trichlorophenol	ND	370	ug/Kg
2-Chloronaphthalene	ND	370	ug/Kg
2-Nitroaniline	ND	370	ug/Kg
Dimethylphthalate	ND	370	ug/Kg
Acenaphthylene	ND	370	ug/Kg
2,6-Dinitrotoluene	ND	370	ug/Kg
3-Nitroaniline	ND	370	ug/Kg
Acenaphthene	ND	370	ug/Kg ug/Kg

Lab #: 449770 **Project#:** 3048_2 Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	1,800	ug/Kg
4-Nitrophenol	ND	370	ug/Kg
Dibenzofuran	ND	370	ug/Kg
2,4-Dinitrotoluene	ND	370	ug/Kg
Diethylphthalate	ND	370	ug/Kg
Fluorene	ND	370	ug/Kg
4-Chlorophenyl-phenylether	ND	370	ug/Kg
4-Nitroaniline	ND	370	ug/Kg
4,6-Dinitro-2-methylphenol	ND	370	ug/Kg
N-Nitrosodiphenylamine	ND	370	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	370	ug/Kg
4-Bromophenyl-phenylether	ND	370	ug/Kg
Hexachlorobenzene	ND	370	ug/Kg
Pentachlorophenol	ND	1,800	ug/Kg
Phenanthrene	ND	370	ug/Kg
Anthracene	ND	370	ug/Kg
Di-n-butylphthalate	ND	370	ug/Kg
Fluoranthene	ND	370	ug/Kg
Benzidine	ND	1,800	ug/Kg
Pyrene	ND	370	ug/Kg
Butylbenzylphthalate	ND	370	ug/Kg
3,3'-Dichlorobenzidine	ND	1,800	ug/Kg
Benzo(a)anthracene	ND	370	ug/Kg
Chrysene	ND	370	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	370	ug/Kg
Di-n-octylphthalate	ND	370	ug/Kg
Benzo(b)fluoranthene	ND	370	ug/Kg
Benzo(k)fluoranthene	ND	370	ug/Kg
Benzo(a)pyrene	ND	370	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	370	ug/Kg
Dibenz(a,h)anthracene	ND	370	ug/Kg
Benzo(g,h,i)perylene	ND	370	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	101	29-1	20
Phenol-d6	108	30-1	20
2,4,6-Tribromophenol	103	32-1	20

Surrogate	%REC	Limits	
2-Fluorophenol	101	29-120	
Phenol-d6	108	30-120	
2,4,6-Tribromophenol	103	32-120	
Nitrobenzene-d5	97	33-120	
2-Fluorobiphenyl	96	39-120	
Terphenyl-d14	109	44-125	

Legend ND: Not Detected RL: Reporting Limit

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Type: BLANK Batch#: 273303 Analysis: EPA 8270C

Lab ID: QC941936 **Prepared:** 09/02/21 Analyst: DJL

Analyzed: 09/02/21 Matrix: Soil **Diln Fac:** 1.000 Prep: EPA 3550C

Analyte	Result	RL	Units
Carbazole	ND	170	ug/Kg
1-Methylnaphthalene	ND	170	ug/Kg
Pyridine	ND	170	ug/Kg
N-Nitrosodimethylamine	ND	170	ug/Kg
Phenol	ND	170	ug/Kg
Aniline	ND	170	ug/Kg
bis(2-Chloroethyl)ether	ND	800	ug/Kg
2-Chlorophenol	ND	170	ug/Kg
1,3-Dichlorobenzene	ND	170	ug/Kg
1,4-Dichlorobenzene	ND	170	ug/Kg
Benzyl alcohol	ND	170	ug/Kg
1,2-Dichlorobenzene	ND	170	ug/Kg
2-Methylphenol	ND	170	ug/Kg
bis(2-Chloroisopropyl) ether	ND	170	ug/Kg
3-,4-Methylphenol	ND	270	ug/Kg
N-Nitroso-di-n-propylamine	ND	170	ug/Kg
Hexachloroethane	ND	170	ug/Kg
Nitrobenzene	ND	800	ug/Kg
Isophorone	ND	170	ug/Kg
2-Nitrophenol	ND	170	ug/Kg
2,4-Dimethylphenol	ND	170	ug/Kg
Benzoic acid	ND	800	ug/Kg
bis(2-Chloroethoxy)methane	ND	170	ug/Kg
2,4-Dichlorophenol	ND	170	ug/Kg
1,2,4-Trichlorobenzene	ND	170	ug/Kg
Naphthalene	ND	170	ug/Kg
4-Chloroaniline	ND	170	ug/Kg
Hexachlorobutadiene	ND	170	ug/Kg
4-Chloro-3-methylphenol	ND	170	ug/Kg
2-Methylnaphthalene	ND	170	ug/Kg
Hexachlorocyclopentadiene	ND	800	ug/Kg
2,4,6-Trichlorophenol	ND	170	ug/Kg
2,4,5-Trichlorophenol	ND	170	ug/Kg
2-Chloronaphthalene	ND	170	ug/Kg
2-Nitroaniline	ND	170	ug/Kg
Dimethylphthalate	ND	170	ug/Kg
Acenaphthylene	ND	170	ug/Kg
2,6-Dinitrotoluene	ND	170	ug/Kg
3-Nitroaniline	ND	170	ug/Kg
Acenaphthene	ND	170	ug/Kg
2,4-Dinitrophenol	ND	800	ug/Kg

Lab #: 449770Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
4-Nitrophenol	ND	170	ug/Kg
Dibenzofuran	ND	170	ug/Kg
2,4-Dinitrotoluene	ND	170	ug/Kg
Diethylphthalate	ND	170	ug/Kg
Fluorene	ND	170	ug/Kg
4-Chlorophenyl-phenylether	ND	170	ug/Kg
4-Nitroaniline	ND	170	ug/Kg
4,6-Dinitro-2-methylphenol	ND	170	ug/Kg
N-Nitrosodiphenylamine	ND	170	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	170	ug/Kg
4-Bromophenyl-phenylether	ND	170	ug/Kg
Hexachlorobenzene	ND	170	ug/Kg
Pentachlorophenol	ND	800	ug/Kg
Phenanthrene	ND	170	ug/Kg
Anthracene	ND	170	ug/Kg
Di-n-butylphthalate	ND	170	ug/Kg
Fluoranthene	ND	170	ug/Kg
Benzidine	ND	800	ug/Kg
Pyrene	ND	170	ug/Kg
Butylbenzylphthalate	ND	170	ug/Kg
3,3'-Dichlorobenzidine	ND	800	ug/Kg
Benzo(a)anthracene	ND	170	ug/Kg
Chrysene	ND	170	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	170	ug/Kg
Di-n-octylphthalate	ND	170	ug/Kg
Benzo(b)fluoranthene	ND	170	ug/Kg
Benzo(k)fluoranthene	ND	170	ug/Kg
Benzo(a)pyrene	ND	170	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	170	ug/Kg
Dibenz(a,h)anthracene	ND	170	ug/Kg
Benzo(g,h,i)perylene	ND	170	ug/Kg

Surrogate	%REC	Limits
2-Fluorophenol	79	29-120
Phenol-d6	84	30-120
2,4,6-Tribromophenol	86	32-120
Nitrobenzene-d5	76	33-120
2-Fluorobiphenyl	83	39-120
Terphenyl-d14	94	44-125

Legend

ND: Not Detected

RL: Reporting Limit

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Type: BS Batch#: 273303 Analysis: EPA 8270C

Lab ID: QC941937 **Prepared:** 09/02/21 Analyst: DJL

Analyzed: 09/02/21 Matrix: Soil **Diln Fac:** 1.000 Prep: EPA 3550C

1.0p. =: // o.	5000				
Spiked	Result	%REC	Limits	Units	Qual
1,329	1,238	93	42-120	ug/Kg	
1,329	1,221	92	41-120	ug/Kg	
1,329	1,174	88	36-120	ug/Kg	
1,329	1,273	96	42-120	ug/Kg	
1,329	1,206	91	43-121	ug/Kg	
1,329	1,027	77	25-120	ug/Kg	
1,329	1,216	91	38-120	ug/Kg	
1,329	1,228	92	40-125	ug/Kg	
1,329	1,366	103	40-124	ug/Kg	
1,329	1,257	95	35-126	ug/Kg	
1,329	1,392	105	24-128	ug/Kg	
1,329	1,501	113	40-131	ug/Kg	b
1,329	986.4	74	35-120	ug/Kg	
1,329	1,348	101	37-135	ug/Kg	
1,329	1,354	102	38-132	ug/Kg	
1,329	1,301	98	38-135	ug/Kg	
			%REC	Limits	
			89	29-120	
			97	30-120	
			106	32-120	
			91	33-120	
			95	39-120	
			111	44-125	
	1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329 1,329	1,329 1,238 1,329 1,221 1,329 1,174 1,329 1,273 1,329 1,206 1,329 1,027 1,329 1,216 1,329 1,228 1,329 1,366 1,329 1,257 1,329 1,366 1,329 1,501 1,329 986.4 1,329 986.4 1,329 1,348 1,329 1,354	1,329 1,238 93 1,329 1,221 92 1,329 1,174 88 1,329 1,273 96 1,329 1,206 91 1,329 1,027 77 1,329 1,216 91 1,329 1,228 92 1,329 1,366 103 1,329 1,257 95 1,329 1,392 105 1,329 1,501 113 1,329 986.4 74 1,329 1,348 101 1,329 1,354 102	1,329	1,329 1,238 93 42-120 ug/Kg 1,329 1,221 92 41-120 ug/Kg 1,329 1,174 88 36-120 ug/Kg 1,329 1,273 96 42-120 ug/Kg 1,329 1,206 91 43-121 ug/Kg 1,329 1,027 77 25-120 ug/Kg 1,329 1,216 91 38-120 ug/Kg 1,329 1,228 92 40-125 ug/Kg 1,329 1,228 92 40-125 ug/Kg 1,329 1,366 103 40-124 ug/Kg 1,329 1,257 95 35-126 ug/Kg 1,329 1,392 105 24-128 ug/Kg 1,329 1,392 105 24-128 ug/Kg 1,329 1,348 101 37-135 ug/Kg 1,329 1,348 101 37-135 ug/Kg 1,329 1,348 101 37-135 ug/Kg 1,329 1,354 102 38-132 ug/Kg 1,329 1,301 98 38-135 ug/Kg

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Type: BSD Batch#: 273303 Analysis: EPA 8270C

Matrix:SoilAnalyzed:09/02/21Diln Fac:1.000Prep:EPA 3550C

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim	Qual
Phenol	1,333	1,152	86	42-120	ug/Kg	8	20	
2-Chlorophenol	1,333	1,194	90	41-120	ug/Kg	3	20	
1,4-Dichlorobenzene	1,333	1,124	84	36-120	ug/Kg	5	20	
3-,4-Methylphenol	1,333	1,214	91	42-120	ug/Kg	5	20	
N-Nitroso-di-n-propylamine	1,333	1,159	87	43-121	ug/Kg	4	20	
2,4-Dimethylphenol	1,333	906.4	68	25-120	ug/Kg	13	20	
1,2,4-Trichlorobenzene	1,333	1,170	88	38-120	ug/Kg	4	20	
4-Chloro-3-methylphenol	1,333	1,151	86	40-125	ug/Kg	7	20	
2,4,5-Trichlorophenol	1,333	1,242	93	40-124	ug/Kg	10	20	
Acenaphthene	1,333	1,176	88	35-126	ug/Kg	7	20	
4-Nitrophenol	1,333	1,297	97	24-128	ug/Kg	7	20	
2,4-Dinitrotoluene	1,333	1,365	102	40-131	ug/Kg	10	20	b
Pentachlorophenol	1,333	983.7	74	35-120	ug/Kg	1	20	
Pyrene	1,333	1,277	96	37-135	ug/Kg	6	20	
Chrysene	1,333	1,281	96	38-132	ug/Kg	6	20	
Benzo(b)fluoranthene	1,333	1,225	92	38-135	ug/Kg	6	20	
Surrogate					%REC	Li	mits	

Surrogate	%REC	Limits	
2-Fluorophenol	85	29-120	
Phenol-d6	92	30-120	
2,4,6-Tribromophenol	96	32-120	
Nitrobenzene-d5	87	33-120	
2-Fluorobiphenyl	89	39-120	
Terphenyl-d14	103	44-125	

Legend

RPD: Relative Percent Difference

b: See narrative

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU2-1A **Prep:** EPA 3546 Batch#: 273331

Lab ID: 449770-001 Sampled: 08/23/21 Analysis: EPA 8081A Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21 **Diln Fac: 20.00** Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	33	ug/Kg
beta-BHC	ND	33	ug/Kg
gamma-BHC	ND	33	ug/Kg
delta-BHC	ND	33	ug/Kg
Heptachlor	ND	33	ug/Kg
Aldrin	ND	33	ug/Kg
Heptachlor epoxide	ND	33	ug/Kg
Endosulfan I	ND	33	ug/Kg
Dieldrin	ND	33	ug/Kg
4,4'-DDE	ND	33	ug/Kg
Endrin	ND	33	ug/Kg
Endosulfan II	ND	33	ug/Kg
Endosulfan sulfate	ND	33	ug/Kg
4,4'-DDD	ND	33	ug/Kg
Endrin aldehyde	ND	33	ug/Kg
Endrin ketone	ND	33	ug/Kg
4,4'-DDT	ND	33	ug/Kg
Methoxychlor	ND	66	ug/Kg
Toxaphene	ND	660	ug/Kg
Chlordane (Technical)	ND	330	ug/Kg
Surrogate	%REC	;	Limits
TCMX	DC)	23-120
Decachlorohinhanyl	DC	`	24 120

Decachlorobiphenyl 24-120 DO

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU2-2A **Prep:** EPA 3546 Batch#: 273331

Lab ID: 449770-002 Sampled: 08/23/21 Analysis: EPA 8081A Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21 **Diln Fac: 10.00** Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REC)	Limits
TCMX	DC)	23-120
Decachlorohinhanyl	DC	`	24 120

Decachlorobiphenyl 24-120 DO

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU7-1A **Batch#:** 273331 **Prep:** EPA 3546

 Lab ID:
 449770-003
 Sampled:
 08/25/21
 Analysis:
 EPA 8081A

 Matrix:
 Soil
 Received:
 08/27/21
 Analyst:
 TRN

 Basis: air dried
 Prepared: 09/03/21

 Diln Fac: 10.00
 Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	280	170	ug/Kg
Surrogate	%REC		Limits
TCMX	DO		23-120
Decachlorobiphenyl	DO		24-120

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU7-1B **Prep:** EPA 3546 Batch#: 273331

Lab ID: 449770-004 Sampled: 08/25/21 Analysis: EPA 8081A Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21 **Diln Fac: 10.00** Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	18	ug/Kg
beta-BHC	ND	18	ug/Kg
gamma-BHC	ND	18	ug/Kg
delta-BHC	ND	18	ug/Kg
Heptachlor	ND	18	ug/Kg
Aldrin	ND	18	ug/Kg
Heptachlor epoxide	ND	18	ug/Kg
Endosulfan I	ND	18	ug/Kg
Dieldrin	ND	18	ug/Kg
4,4'-DDE	ND	18	ug/Kg
Endrin	ND	18	ug/Kg
Endosulfan II	ND	18	ug/Kg
Endosulfan sulfate	ND	18	ug/Kg
4,4'-DDD	ND	18	ug/Kg
Endrin aldehyde	ND	18	ug/Kg
Endrin ketone	ND	18	ug/Kg
4,4'-DDT	ND	18	ug/Kg
Methoxychlor	ND	35	ug/Kg
Toxaphene	ND	350	ug/Kg
Chlordane (Technical)	ND	180	ug/Kg
Surrogate	%REC	;	Limits
TCMX	DC)	23-120
Decembershiphanyl	DC	`	04 100

Decachlorobiphenyl DO 24-120

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU7-1C
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-005
 Sampled:
 08/25/21
 Analysis:
 EPA 8081A

 Matrix:
 Soil
 Received:
 08/27/21
 Analyst:
 TRN

Basis: air driedPrepared: 09/03/21Diln Fac: 10.00Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	16	ug/Kg
beta-BHC	ND	16	ug/Kg
gamma-BHC	ND	16	ug/Kg
delta-BHC	ND	16	ug/Kg
Heptachlor	ND	16	ug/Kg
Aldrin	ND	16	ug/Kg
Heptachlor epoxide	ND	16	ug/Kg
Endosulfan I	ND	16	ug/Kg
Dieldrin	ND	16	ug/Kg
4,4'-DDE	ND	16	ug/Kg
Endrin	ND	16	ug/Kg
Endosulfan II	ND	16	ug/Kg
Endosulfan sulfate	ND	16	ug/Kg
4,4'-DDD	ND	16	ug/Kg
Endrin aldehyde	ND	16	ug/Kg
Endrin ketone	ND	16	ug/Kg
4,4'-DDT	ND	16	ug/Kg
Methoxychlor	ND	32	ug/Kg
Toxaphene	ND	320	ug/Kg
Chlordane (Technical)	340	160	ug/Kg
Surrogate	%REC		Limits
TCMX	DO		23-120
Decachlorobiphenyl	DO		24-120

Legend

DO: Diluted Out

ND: Not Detected

RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU7-2A **Prep:** EPA 3546 Batch#: 273331

Lab ID: 449770-006 Sampled: 08/25/21 Analysis: EPA 8081A Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21 **Diln Fac: 10.00** Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	16	ug/Kg
beta-BHC	ND	16	ug/Kg
gamma-BHC	ND	16	ug/Kg
delta-BHC	ND	16	ug/Kg
Heptachlor	ND	16	ug/Kg
Aldrin	ND	16	ug/Kg
Heptachlor epoxide	ND	16	ug/Kg
Endosulfan I	ND	16	ug/Kg
Dieldrin	ND	16	ug/Kg
4,4'-DDE	ND	16	ug/Kg
Endrin	ND	16	ug/Kg
Endosulfan II	ND	16	ug/Kg
Endosulfan sulfate	ND	16	ug/Kg
4,4'-DDD	ND	16	ug/Kg
Endrin aldehyde	ND	16	ug/Kg
Endrin ketone	ND	16	ug/Kg
4,4'-DDT	ND	16	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	160	ug/Kg
Surrogate	%REC	;	Limits
TCMX	DC)	23-120
Decachlorohinhanyl	DC	`	24 120

Decachlorobiphenyl 24-120 DO

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU6-1A
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-007
 Sampled:
 08/25/21
 Analysis:
 EPA 8081A

 Matrix:
 Soil
 Received:
 08/27/21
 Analyst:
 TRN

 Basis: air dried
 Prepared: 09/03/21

 Diln Fac: 10.00
 Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	16	ug/Kg
beta-BHC	ND	16	ug/Kg
gamma-BHC	ND	16	ug/Kg
delta-BHC	ND	16	ug/Kg
Heptachlor	ND	16	ug/Kg
Aldrin	ND	16	ug/Kg
Heptachlor epoxide	ND	16	ug/Kg
Endosulfan I	ND	16	ug/Kg
Dieldrin	ND	16	ug/Kg
4,4'-DDE	ND	16	ug/Kg
Endrin	ND	16	ug/Kg
Endosulfan II	ND	16	ug/Kg
Endosulfan sulfate	ND	16	ug/Kg
4,4'-DDD	ND	16	ug/Kg
Endrin aldehyde	ND	16	ug/Kg
Endrin ketone	ND	16	ug/Kg
4,4'-DDT	ND	16	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	160	ug/Kg
Surrogate	%REC	;	Limits
TCMX	DC)	23-120
Decachlorobiphenyl	DC)	24-120

Legend

DO: Diluted Out

ND: Not Detected

RL: Reporting Limit

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU6-2A
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-008
 Sampled:
 08/25/21
 Analysis:
 EPA 8081A

 Matrix:
 Soil
 Received:
 08/27/21
 Analyst:
 TRN

 Basis: air dried
 Prepared: 09/03/21

 Diln Fac: 10.00
 Analyzed: 09/03/21

Analyte	Result	RL	Units
alpha-BHC	ND	16	ug/Kg
beta-BHC	ND	16	ug/Kg
gamma-BHC	ND	16	ug/Kg
delta-BHC	ND	16	ug/Kg
Heptachlor	ND	16	ug/Kg
Aldrin	ND	16	ug/Kg
Heptachlor epoxide	ND	16	ug/Kg
Endosulfan I	ND	16	ug/Kg
Dieldrin	ND	16	ug/Kg
4,4'-DDE	ND	16	ug/Kg
Endrin	ND	16	ug/Kg
Endosulfan II	ND	16	ug/Kg
Endosulfan sulfate	ND	16	ug/Kg
4,4'-DDD	ND	16	ug/Kg
Endrin aldehyde	ND	16	ug/Kg
Endrin ketone	ND	16	ug/Kg
4,4'-DDT	ND	16	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	160	ug/Kg
Surrogate	%REC	;	Limits
TCMX	DC)	23-120
Decachlorobiphenyl	DC)	24-120

Legend DO: Diluted Out

ND: Not Detected RL: Reporting Limit

Organochlorine Pesticides: Batch QC

Project#: 3048_2 **Lab #:** 449770

Location: AQS Client: Myounghee Noh & Associates

Type: BLANK Analysis: EPA 8081A Batch#: 273331

Analyst: TRN Lab ID: QC942009 **Prepared:** 09/03/21

Analyzed: 09/03/21 Matrix: Soil **Diln Fac: 1.000 Prep:** EPA 3546

Analyte	Result	RL	Units
alpha-BHC	ND	1.7	ug/Kg
beta-BHC	ND	1.7	ug/Kg
gamma-BHC	ND	1.7	ug/Kg
delta-BHC	ND	1.7	ug/Kg
Heptachlor	ND	1.7	ug/Kg
Aldrin	ND	1.7	ug/Kg
Heptachlor epoxide	ND	1.7	ug/Kg
Endosulfan I	ND	1.7	ug/Kg
Dieldrin	ND	1.7	ug/Kg
4,4'-DDE	ND	1.7	ug/Kg
Endrin	ND	1.7	ug/Kg
Endosulfan II	ND	1.7	ug/Kg
Endosulfan sulfate	ND	1.7	ug/Kg
4,4'-DDD	ND	1.7	ug/Kg
Endrin aldehyde	ND	1.7	ug/Kg
Endrin ketone	ND	1.7	ug/Kg
4,4'-DDT	ND	1.7	ug/Kg
Methoxychlor	ND	3.3	ug/Kg
Toxaphene	ND	33	ug/Kg
Chlordane (Technical)	ND	17	ug/Kg
Surrogate	%REC		Limits
TCMX	106		23-120
Decachlorobiphenyl	67		24-120

Legend ND: Not Detected RL: Reporting Limit

Organochlorine Pesticides: Batch QC

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BS Batch#: 273331

Analysis: EPA 8081A

Lab ID: QC942010

Prepared: 09/03/21

Analyst: TRN

Matrix: Soil

Analyzed: 09/03/21

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	Qual
alpha-BHC	16.67	18.85	113	22-129	ug/Kg	#
beta-BHC	16.67	16.49	99	28-125	ug/Kg	
gamma-BHC	16.67	19.78	119	22-128	ug/Kg	#
delta-BHC	16.67	18.36	110	24-131	ug/Kg	#
Heptachlor	16.67	16.55	99	18-124	ug/Kg	
Aldrin	16.67	13.46	81	23-120	ug/Kg	
Heptachlor epoxide	16.67	14.22	85	26-120	ug/Kg	
Endosulfan I	16.67	15.95	96	25-126	ug/Kg	
Dieldrin	16.67	15.82	95	23-124	ug/Kg	
4,4'-DDE	16.67	15.27	92	28-121	ug/Kg	
Endrin	16.67	16.94	102	25-127	ug/Kg	
Endosulfan II	16.67	15.49	93	29-121	ug/Kg	
Endosulfan sulfate	16.67	14.28	86	30-121	ug/Kg	
4,4'-DDD	16.67	13.67	82	26-120	ug/Kg	
Endrin aldehyde	16.67	7.440	45	10-120	ug/Kg	
Endrin ketone	16.67	13.25	80	28-125	ug/Kg	
4,4'-DDT	16.67	13.82	83	22-125	ug/Kg	
Methoxychlor	16.67	12.71	76	28-130	ug/Kg	
Surrogate				%REC	Limits	
TCMX				107	23-120	
Decachlorobiphenyl				77	24-120	

1 of 2

v28

Organochlorine Pesticides: Batch QC

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BSD Batch#: 273331

Analysis: EPA 8081A

Analyst: TRN

Lab ID: QC942011

Prepared: 09/03/21

Matrix: Soil

Analyzed: 09/03/21

Diln Fac: 1.000 Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim	Qual
alpha-BHC	16.67	20.24	121	22-129	ug/Kg	7	20	#
beta-BHC	16.67	19.20	115	28-125	ug/Kg	15	20	
gamma-BHC	16.67	20.07	120	22-128	ug/Kg	1	20	#
delta-BHC	16.67	18.27	110	24-131	ug/Kg	1	20	#
Heptachlor	16.67	17.19	103	18-124	ug/Kg	4	20	
Aldrin	16.67	13.66	82	23-120	ug/Kg	2	20	
Heptachlor epoxide	16.67	16.43	99	26-120	ug/Kg	14	20	
Endosulfan I	16.67	17.02	102	25-126	ug/Kg	6	20	
Dieldrin	16.67	17.08	102	23-124	ug/Kg	8	20	
4,4'-DDE	16.67	16.47	99	28-121	ug/Kg	8	20	
Endrin	16.67	17.43	105	25-127	ug/Kg	3	20	
Endosulfan II	16.67	16.38	98	29-121	ug/Kg	6	20	
Endosulfan sulfate	16.67	14.71	88	30-121	ug/Kg	3	20	
4,4'-DDD	16.67	14.13	85	26-120	ug/Kg	3	20	
Endrin aldehyde	16.67	4.962	30	10-120	ug/Kg	40 *	20	
Endrin ketone	16.67	13.75	83	28-125	ug/Kg	4	20	
4,4'-DDT	16.67	13.16	79	22-125	ug/Kg	5	20	
Methoxychlor	16.67	12.35	74	28-130	ug/Kg	3	20	
Surrogate					%REC	L	imits	
TCMX					111	2	3-120	
Decachlorobiphenyl					80	2	4-120	

Legend

RPD: Relative Percent Difference

^{#:} CCV drift outside limits; average CCV drift within limits per method requirements

^{*:} Value is outside QC limits

1 of 5

Polychlorinated Biphenyls (PCBs)

Project#: 3048_2 **Lab #:** 449770

Location: AQS Client: Myounghee Noh & Associates

Field ID: 3048-DU2-1A **Analyzed:** 09/03/21 **Diln Fac:** 5.000

Type: SAMPLE Batch#: 273331 **Prep:** EPA 3546 **Lab ID:** 449770-001 **Sampled:** 08/23/21 Analysis: EPA 8082

Matrix: Soil **Received:** 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		101	19-121

Decachiorobiphenyl (PCB)

Field ID: 3048-DU2-2A **Diln Fac:** 2.000 **Analyzed:** 09/03/21 Type: SAMPLE Batch#: 273331 **Prep:** EPA 3546 **Lab ID:** 449770-002 **Sampled:** 08/23/21 Analysis: EPA 8082

Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	33	ug/Kg
Aroclor-1221	ND	33	ug/Kg
Aroclor-1232	ND	33	ug/Kg
Aroclor-1242	ND	33	ug/Kg
Aroclor-1248	ND	33	ug/Kg
Aroclor-1254	ND	33	ug/Kg
Aroclor-1260	ND	33	ug/Kg
Aroclor-1262	ND	33	ug/Kg
Aroclor-1268	ND	33	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		75	19-121

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU7-1A **Analyzed:** 09/07/21 **Diln Fac:** 5.000

Type: SAMPLE Batch#: 273331 **Prep:** EPA 3546 **Lab ID:** 449770-003 **Sampled:** 08/25/21 Analysis: EPA 8082

Matrix: Soil **Received:** 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		86	19-121

Decachlorobiphenyl (PCB)

Field ID: 3048-DU7-1B **Diln Fac:** 5.000 **Analyzed:** 09/07/21 Type: SAMPLE Batch#: 273331 **Prep:** EPA 3546 **Lab ID:** 449770-004 Analysis: EPA 8082 **Sampled:** 08/25/21

Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	88	ug/Kg
Aroclor-1221	ND	88	ug/Kg
Aroclor-1232	ND	88	ug/Kg
Aroclor-1242	ND	88	ug/Kg
Aroclor-1248	ND	88	ug/Kg
Aroclor-1254	ND	88	ug/Kg
Aroclor-1260	210	88	ug/Kg
Aroclor-1262	ND	88	ug/Kg
Aroclor-1268	ND	88	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		84	19-121

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU7-1C
 Diln Fac:
 5.000
 Analyzed:
 09/07/21

 Type:
 SAMPLE
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-005
 Sampled:
 08/25/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	81	ug/Kg
Aroclor-1221	ND	81	ug/Kg
Aroclor-1232	ND	81	ug/Kg
Aroclor-1242	ND	81	ug/Kg
Aroclor-1248	ND	81	ug/Kg
Aroclor-1254	ND	81	ug/Kg
Aroclor-1260	ND	81	ug/Kg
Aroclor-1262	ND	81	ug/Kg
Aroclor-1268	ND	81	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		81	19-121

 Field ID:
 3048-DU7-2A
 Diln Fac:
 2.000
 Analyzed:
 09/07/21

 Type:
 SAMPLE
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-006
 Sampled:
 08/25/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	33	ug/Kg
Aroclor-1221	ND	33	ug/Kg
Aroclor-1232	ND	33	ug/Kg
Aroclor-1242	ND	33	ug/Kg
Aroclor-1248	ND	33	ug/Kg
Aroclor-1254	ND	33	ug/Kg
Aroclor-1260	320	33	ug/Kg
Aroclor-1262	ND	33	ug/Kg
Aroclor-1268	ND	33	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		51	19-121

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU6-1A
 Diln Fac:
 2.000
 Analyzed:
 09/07/21

 Type:
 SAMPLE
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-007
 Sampled:
 08/25/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	33	ug/Kg
Aroclor-1221	ND	33	ug/Kg
Aroclor-1232	ND	33	ug/Kg
Aroclor-1242	ND	33	ug/Kg
Aroclor-1248	ND	33	ug/Kg
Aroclor-1254	ND	33	ug/Kg
Aroclor-1260	110	33	ug/Kg
Aroclor-1262	ND	33	ug/Kg
Aroclor-1268	ND	33	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		50	19-121

 Field ID:
 3048-DU6-2A
 Diln Fac:
 5.000
 Analyzed:
 09/07/21

 Type:
 SAMPLE
 Batch#:
 273331
 Prep:
 EPA 3546

 Lab ID:
 449770-008
 Sampled:
 08/25/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 08/27/21 Analyst: TRN

Basis: air dried **Prepared:** 09/03/21

Analyte	Result	RL	Units
Aroclor-1016	ND	82	ug/Kg
Aroclor-1221	ND	82	ug/Kg
Aroclor-1232	ND	82	ug/Kg
Aroclor-1242	ND	82	ug/Kg
Aroclor-1248	ND	82	ug/Kg
Aroclor-1254	ND	82	ug/Kg
Aroclor-1260	150	82	ug/Kg
Aroclor-1262	ND	82	ug/Kg
Aroclor-1268	ND	82	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		58	19-121

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates **Location:** AQS

Type: BLANK Analysis: EPA 8082 Batch#: 273331

Analyst: TRN Lab ID: QC942009 **Prepared:** 09/03/21

Analyzed: 09/03/21 Matrix: Soil **Diln Fac:** 1.000 **Prep:** EPA 3546

Analyte	Result	RL	Units
Aroclor-1016	ND	17	ug/Kg
Aroclor-1221	ND	17	ug/Kg
Aroclor-1232	ND	17	ug/Kg
Aroclor-1242	ND	17	ug/Kg
Aroclor-1248	ND	17	ug/Kg
Aroclor-1254	ND	17	ug/Kg
Aroclor-1260	ND	17	ug/Kg
Aroclor-1262	ND	17	ug/Kg
Aroclor-1268	ND	17	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		90	19-121

Legend ND: Not Detected RL: Reporting Limit

Polychlorinated Biphenyls (PCBs): Batch QC

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BS **Batch#:** 273331

Analysis: EPA 8082

Lab ID: QC942012

Prepared: 09/03/21 Analyst: TRN

Matrix: Soil

Analyzed: 09/03/21

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units
Aroclor-1016	166.7	154.9	93	14-150	ug/Kg
Aroclor-1260	166.7	127.2	76	10-150	ug/Kg
Surrogate				%REC	Limits
Decachlorobiphenyl (PCB)				75	19-121

Type: BSD

Batch#: 273331

Analysis: EPA 8082

Lab ID: QC942013

Prepared: 09/03/21

Analysis: EPA 808/ Analyst: TRN

Matrix: Soil

Analyzed: 09/03/21

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Aroclor-1016	166.7	189.6	114	14-150	ug/Kg	20	20
Aroclor-1260	166.7	156.0	94	10-150	ug/Kg	20	20
Surrogate					%REC	Limits	
Decachlorobiphenyl (PCB)					102	19-121	

Legend

RPD: Relative Percent Difference

Lab #: 449770Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

 Field ID:
 3048-DU2-1A
 Lab ID:
 449770-001
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/23/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	5.9	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	50	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	76	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	2.5	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.19	mg/Kg	dry	11%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

 Field ID:
 3048-DU2-2A
 Lab ID:
 449770-002
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/23/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	ND	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	82	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	120	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	3.5	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.19	mg/Kg	dry	16%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

 Field ID:
 3048-DU7-1A
 Lab ID:
 449770-003
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/25/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	2.2	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	86	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	170	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	13	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.16	mg/Kg	dry	15%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

Lab #: 449770 Project#: 3048_2
Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU7-1B
 Lab ID:
 449770-004
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/25/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	3.8	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	100	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	200	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	13	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.17	mg/Kg	dry	14%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

 Field ID:
 3048-DU7-1C
 Lab ID:
 449770-005
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/25/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	3.8	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	96	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	200	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	15	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.17	mg/Kg	dry	14%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

 Field ID:
 3048-DU7-2A
 Lab ID:
 449770-006
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/25/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	5.9	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	160	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	180	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	41	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.16	mg/Kg	dry	11%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

Lab #: 449770 Project#: 3048_2
Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU6-1A
 Lab ID:
 449770-007
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/25/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	3.1	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	81	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	200	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	14	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.18	mg/Kg	dry	14%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

 Field ID:
 3048-DU6-2A
 Lab ID:
 449770-008
 Diln Fac:
 1.000
 Received:
 08/27/21

 Type:
 SAMPLE
 Matrix:
 Soil
 Sampled:
 08/25/21
 Prepared:
 09/07/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Analyzed	Prep	Analysis	Analyst
Arsenic	5.8	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Barium	110	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Cadmium	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Chromium	160	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Lead	16	0.50	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Mercury	ND	0.17	mg/Kg	dry	11%	273498	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP
Silver	ND	0.25	mg/Kg	air dried		273438	09/07/21	EPA 3050B	EPA 6010B	JCP

Type: BLANK Batch#: 273438 Analysis: EPA 6010B

Lab ID: QC942323 Prepared: 09/07/21 Analyst: JCP

 Matrix:
 Soil
 Analyzed:
 09/07/21

 Diln Fac:
 1.000
 Prep:
 EPA 3050B

Analyte	Result	RL	Units	
Arsenic	ND	0.50	mg/Kg	
Barium	ND	0.50	mg/Kg	
Cadmium	ND	0.25	mg/Kg	
Chromium	ND	0.50	mg/Kg	
Lead	ND	0.50	mg/Kg	
Selenium	ND	1.5	mg/Kg	
Silver	ND	0.25	mg/Kg	

Type: BLANK Batch#: 273498 Analysis: EPA 7471A

 Lab ID: QC942492
 Prepared: 09/07/21
 Analyst: TNN

Matrix:SoilAnalyzed:09/08/21Diln Fac:1.000Prep:METHOD

 Analyte
 Result
 RL
 Units

 Mercury
 ND
 0.14
 mg/Kg

Lab #: 449770Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Legend

ND: Not Detected

RL: Reporting Limit

Metals Analytical Report: Batch QC

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

 Type:
 BS
 Batch#:
 273438
 Analysis:
 EPA 6010B

 Lab ID:
 QC942324
 Prepared:
 09/07/21
 Analyst:
 JCP

Matrix: Soil Analyzed: 09/07/21

Diln Fac: 1.000 Prep: EPA 3050B

Analyte	Spiked	Result	%REC	Limits	Units
Arsenic	50.00	52.45	105	80-120	mg/Kg
Barium	50.00	49.50	99	80-120	mg/Kg
Cadmium	50.00	49.31	99	80-120	mg/Kg
Chromium	50.00	49.83	100	80-120	mg/Kg
Lead	50.00	51.42	103	80-120	mg/Kg
Selenium	50.00	45.55	91	80-120	mg/Kg
Silver	25.00	22.63	91	80-120	mg/Kg

Type: BSD Batch#: 273438 Analysis: EPA 6010B

Lab ID: QC942325 Prepared: 09/07/21 Analyst: JCP

Matrix: Soil Analyzed: 09/07/21

Diln Fac: 1.000 Prep: EPA 3050B

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Arsenic	50.00	53.78	108	80-120	mg/Kg	3	20
Barium	50.00	51.48	103	80-120	mg/Kg	4	20
Cadmium	50.00	50.79	102	80-120	mg/Kg	3	20
Chromium	50.00	51.44	103	80-120	mg/Kg	3	20
Lead	50.00	53.00	106	80-120	mg/Kg	3	20
Selenium	50.00	46.52	93	80-120	mg/Kg	2	20
Silver	25.00	23.55	94	80-120	mg/Kg	4	20

Legend

RPD: Relative Percent Difference

1 of 1

Metals Analytical Report: Batch QC

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Analyst: TNN

Type: LCS Analysis: EPA 7471A Batch#: 273498

Lab ID: QC942493 **Prepared:** 09/07/21 Matrix: Soil **Analyzed:** 09/08/21

Diln Fac: 1.000 Prep: METHOD

Analyte	Spiked	Result	%REC	Limits	Units
Mercury	0.8333	0.8302	100	80-120	mg/Kg

Metals Analytical Report: Batch QC

Lab #: 449770 Project#: 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: ZZZZZZZZZ Basis: as received Prepared: 09/07/21

 Type:
 MS
 Diln Fac:
 1.000
 Analyzed:
 09/08/21

 MSS Lab ID:
 449994-001
 Batch#:
 273498
 Prep:
 METHOD

Matrix: Soil Received: 09/02/21 Analyst: TNN

 Analyte
 MSS Result
 Spiked
 Result
 %REC
 Limits
 Units

 Mercury
 <0.04587</td>
 0.9259
 0.9312
 101
 75-125
 mg/Kg

Field ID: ZZZZZZZZZ Basis: as received Prepared: 09/07/21

 Type:
 MSD
 Diln Fac:
 1.000
 Analyzed:
 09/08/21

 MSS Lab ID:
 449994-001
 Batch#:
 273498
 Prep:
 METHOD

Lab ID: QC942495 Sampled: 09/01/21 Analysis: EPA 7471A

Matrix: Soil Received: 09/02/21 Analyst: TNN

 Analyte
 Spiked
 Result
 %REC
 Limits
 Units
 RPD
 Lim

 Mercury
 0.9804
 1.008
 103
 75-125
 mg/Kg
 2
 20

Legend

RPD: Relative Percent Difference

Moisture Lab #: 449770 Project#: 3048 2 Client: Myounghee Noh & Associates Location: AQS Prep: METHOD Field ID: 3048-DU2-1A Batch#: 273307 Lab ID: 449770-001 Sampled: 08/23/21 Analysis: ASTM D2216 Matrix: Soil Received: 08/27/21 Analyst: ECC **Diln Fac: 1.000** Analyzed: 09/02/21 Analyte Result RL Units Moisture, Percent 11 % Field ID: 3048-DU2-2A Batch#: 273307 Prep: METHOD Lab ID: 449770-002 Sampled: 08/23/21 Analysis: ASTM D2216 Matrix: Soil Analyst: ECC Received: 08/27/21 **Diln Fac: 1.000** Analyzed: 09/02/21 Analyte Result RL Units Moisture. Percent 16 % Field ID: 3048-DU7-1A Batch#: 273307 Prep: METHOD Lab ID: 449770-003 Sampled: 08/25/21 Analysis: ASTM D2216 Matrix: Soil Received: 08/27/21 Analyst: ECC **Diln Fac: 1.000** Analyzed: 09/02/21 Analyte Result RL Units Moisture, Percent 15 % Field ID: 3048-DU7-1B Batch#: 273307 Prep: METHOD Lab ID: 449770-004 Sampled: 08/25/21 Analysis: ASTM D2216 Matrix: Soil Received: 08/27/21 Analyst: ECC **Diln Fac: 1.000** Analyzed: 09/02/21 Analyte Result RL Units Moisture, Percent 14 1 % Field ID: 3048-DU7-1C Batch#: 273307 Prep: METHOD Lab ID: 449770-005 Sampled: 08/25/21 Analysis: ASTM D2216 Matrix: Soil Received: 08/27/21 Analyst: ECC **Diln Fac: 1.000** Analyzed: 09/02/21 Analyte Result RL Units Moisture, Percent 14 Field ID: 3048-DU7-2A Batch#: 273307 Prep: METHOD Lab ID: 449770-006 Analysis: ASTM D2216 Sampled: 08/25/21 Matrix: Soil Received: 08/27/21 Analyst: ECC **Diln Fac: 1.000** Analyzed: 09/02/21 Units Analyte Result RL

%

11

1

Moisture, Percent

Moisture

Lab #: 449770 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU6-1A **Batch#:** 273307 **Prep:** METHOD

Lab ID: 449770-007 **Sampled:** 08/25/21 **Analysis:** ASTM D2216

Matrix: Soil Received: 08/27/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/02/21

Analyte Result RL Units

Moisture, Percent 14 1 %

 Field ID:
 3048-DU6-2A
 Batch#:
 273307
 Prep:
 METHOD

 Lab ID:
 449770-008
 Sampled:
 08/25/21
 Analysis:
 ASTM D2216

Matrix: Soil Received: 08/27/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/02/21

Analyte Result RL Units

Moisture, Percent 11 1 %

Legend RL: Reporting Limit

Moisture: Batch QC

Project#: 3048_2 **Lab #:** 449770

Client: Myounghee Noh & Associates

Prep: METHOD **Diln Fac: 1.000**

Location: AQS

Field ID: 3048-DU2-1A Type: SDUP Batch#: 273307 Analysis: ASTM D2216

MSS Lab ID: 449770-001 Analyst: ECC **Sampled:** 08/23/21

Lab ID: QC941946 **Received:** 08/27/21

Matrix: Soil Analyzed: 09/02/21

Analyte MSS Result RLUnits **RPD** Lim Result Moisture, Percent 10.77 10.86 % 1.000 26

Legend

RL: Reporting Limit

RPD: Relative Percent Difference

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 449877

Report Level: II

Report Date: 09/13/2021

Analytical Report *prepared for:*

Jennah Oshiro Myounghee Noh & Associates 99-1046 Iwaena Street 210A Aiea, HI 96701

Project: 3048 2 - AQS

Authorized for release by:

Jessier & ilbeumon

Jess Silberman, Project Manager

510-204-2236

jessica.silberman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Jennah Oshiro

Myounghee Noh & Associates

99-1046 Iwaena Street

210A

Aiea, HI 96701

Lab Job #: 449877

Project No: 3048_2

Location: AQS

Date Received: 08/31/21

Sample ID	Lab ID	Collected	Matrix
3048-DU1-1A	449877-001	08/27/21 10:00	Soil
3048-DU1-1B	449877-002	08/27/21 11:00	Soil
3048-DU1-1C	449877-003	08/27/21 12:00	Soil
3048-DU1-2A	449877-004	08/27/21 15:00	Soil

Case Narrative

Myounghee Noh & Associates 99-1046 Iwaena Street 210A

Aiea, HI 96701 Jennah Oshiro Lab Job Number: 449877
Project No: 3048_2
Location: AQS

Date Received: 08/31/21

This data package contains sample and QC results for four soil samples, requested for the above referenced project on 08/31/21. The samples were received cold and intact. Multi-Increment Sampling (ISM) was performed on all samples in accordance with HDOH specifications.

Pesticides (EPA 8081A):

High recoveries were observed for a number of analytes in the BS for batch 273477; the associated RPDs were within limits, and these analytes were not detected at or above the RL in the associated samples. High RPD was observed for dieldrin, endrin, and endrin aldehyde in the BS/BSD for batch 273477; these analytes were not detected at or above the RL in the associated samples. A number of samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

Metals (EPA 6010B):

No analytical problems were encountered.

CHAIN OF CUSTODY

	ENTHA ANALYT	LPY														hain	of C		- '		of	1
Form					C&T	LOGII	N#_	149	877	7			ΔN	ΔΙΥ								
2323 Fi Berkele Project I Project I EDD For	P. O. No: 5048-2 mat: Report Level 241 [und Time: Rush 5	Phone (51) Fax (51) Sar Re Co	10) 486-09 10) 486-05 npler: poort To: mpany: ephone: ail: WW	32	n () ah ah ahel ahel non:	shiv Och Noi 13	M 0	Asi ale	Xial 5.00	(1001)	dis (808) A)	day	AN	ALY		AL	REG	QUE	ST			
No.	Sample ID.	Date Collected	Time Collected	Water	# of Contr	모	Ι.Τ	HON		7 000	Desta	SIM										
2	3048-DUI-1A 3048-DUI-1B 3048-DUI-1C	8/27/21	1000	X					X X	XXX	X	XX										
9	3048-DU1-24	8/27/21	1500							×	X	X			-				_		+	
																			士	士		
																			\pm		\perp	
								_		-					+	-		\dashv	+	+	+	+
																		\Box	_	1	1	
Notes:		SAMPLE RECEIPT Intact Cold On Ice	Klast	R 9 9 13	ELINQ	UISHE	DATE:	T 30	TIME:	1:15		n Co	1	n	REC	CEIVE	D		VZI N	TIME	(<i>010</i> E: E: 2	
		Ambient -					DATE:		TIME:								D,	ATE:		TIME	<u> </u>	—

SAMPLE RECEIPT CHECKLIST		· ·	
Section 1: Login # <u> </u>			13
Date Received: 2/3[/2] Project:		ENI	HALPY
Section 2: Shipping info (if applicable) Fed By 7746 7564 9520	<u> </u>	_	
Are custody seals present? ロ No, or PYes. If yes, where? ロ on cooler, ロ on samp	oles, LJ on pa	ackage	
Were custody seals intact upon arrival? ☑ No □ N/A			
Samples received in a cooler? Yes, how many? No (skip Section 3 below)			
If no cooler Sample Temp (°C): using IR Gun # 🛛 B, or 🗍 C			
☐ Samples received on ice directly from the field. Cooling process had begun	7		
If in cooler: Date Opened $\frac{G}{3}$ 31/24 By (print) M (sign) $\frac{1}{2}$			
Section 3: Important : Notify PM if temperature	d- C90		
	e exceeds 6°C	or arrive	e trozen
Packing in cooler: (if other, describe)			
₹☐ Bubble Wrap, ☐ Foam blocks, ☐ Bags, ☐ None, ☐ Cloth material, ☐ Cardboard, ☐ Styrofoa	m, LI Paper	towels	
Samples received on ice directly from the field. Cooling process had begun			
Type of ice used : Wet, Blue/Gel, None Temperature blank(s) include	d? 🗌 Yes,	□ No	
Temperature measured using Thermometer ID: or IR Gun # Z B C			
Cooler Temp (°C): #1: <u>ソ・ナ</u> , #2:, #3:, #4:, #5:, #6:	, #7:		
Section 4:	YES	NO	N/A
Were custody papers dry, filled out properly, and the project identifiable			transfer
Were Method 5035 sampling containers present?			form tribus
If YES, what time were they transferred to freezer?		No.	Law
Did all bottles arrive unbroken/unopened?	*		
Are there any missing / extra samples?			
Are samples in the appropriate containers for indicated tests?	/		La.
Are sample labels present, in good condition and complete?			
Does the container count match the COC?		T	
Do the sample labels agree with custody papers?			44.0
Was sufficient amount of sample sent for tests requested?			
Did you change the hold time in LIMS for unpreserved VOAs?			
Did you change the hold time in LIMS for preserved terracores?			
Are bubbles > 6mm present in VOA samples?			_
Was the client contacted concerning this sample delivery?		 	
If YES, who was called?ByDate:	danis	Marie Sald	Secretary Sec.
Section 5:	YES	NO	N/A
Are the samples appropriately preserved? (if N/A, skip the rest of section 5)		 	1.7.
Did you check preservatives for all bottles for each sample?		1	7 1
Did you document your preservative check?			9 9 9 9
pH strip lot#, pH strip lot#, pH strip lot#, pH strip lot#	L		<u> </u>
Preservative added:		-	
	n/at		
THC lot# added to samples	n/at 		
	on/at		
	on/at		
Section 6:	nyac		
Explanations/Comments:			
	M		
Date Logged in 8/3/21 By (print) Me (sign)			
Date Labeled $8/31/71$ By (print) $1/2$ (sign)			

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Myounghee Noh and Associates	Project: <u>3048-2</u>			
Date Received: 9/3/21	✓ Yes No			
Section 2				
Sample(s) received in a cooler?	No (skip section 2)	•	e Temp (°C) (No Cooler)	: l
Sample Temp (°C), One from each cooler: #1: 2.2	#2: #3:		•	
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accept	ance range is < 10°C but not frozen). I	t is acceptable		s collected
the same day as sample receipt to have a higher tempera	ture as long as there is evidence that co	oling has beg	un.)	
Shipping Information:				
Section 3				
Was the cooler packed with:	Bubble Wrap Styro	ofoam		
Cooler Temp (°C): #1: <u>2.4</u> #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?	**************************************	V		
Are sample IDs present?		'		
Are sampling dates & times present?		· ·		
Is a relinquished signature present?		<u> </u>		
Are the tests required clearly indicated on the COC?		· ·		
Are custody seals present?			~	
If custody seals are present, were they intact?				~
Are all samples sealed in plastic bags? (Recommended t		V		
Did all samples arrive intact? If no, indicate in Section 4	below.	V		
Did all bottle labels agree with COC? (ID, dates and time	s)	V		
Were the samples collected in the correct containers for	the required tests?	'		
Are the containers labeled with the correct preser	vatives?			V
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			~
Was a sufficient amount of sample submitted for the re	quested tests?	V		
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager notified	d?Verbal PM Initials: Email (email sent to,			
Project Manager's response:				
Completed By:	_Date:	<u>1</u>		

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

800-322-5555 www.gls-us.com

Ship From

ENTHALPY ANALYTICAL BERKELEY SERVICE CENTER 2323 5TH STREET BERKELEY, CA 94710

Ship To ENTHALPY ANALYTICAL (ORG) SAMPLE RECEIVING 931 W BARKLEY AVE. ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

Tracking #: 554512247

CPS

ORANGE

22/14

S10003H

ORC CA927-EH1

Print Date: 9/2/2021 1:45 PM

Package 4 of 5

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the General Logistics Systems US, Inc. (GLS) service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gls-us.com.

Project#: 3048_2 **Lab #:** 449877

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU1-1A **Prep:** EPA 3546 Batch#: 273477

Lab ID: 449877-001 Sampled: 08/27/21 Analysis: EPA 8081A Matrix: Soil **Received:** 08/31/21 Analyst: TRN

Basis: air dried **Prepared:** 09/08/21 **Diln Fac:** 5.000 **Analyzed:** 09/08/21

Analyte	Result	RL	Units
alpha-BHC	ND	8.3	ug/Kg
beta-BHC	ND	8.3	ug/Kg
gamma-BHC	ND	8.3	ug/Kg
delta-BHC	ND	8.3	ug/Kg
Heptachlor	ND	8.3	ug/Kg
Aldrin	ND	8.3	ug/Kg
Heptachlor epoxide	ND	8.3	ug/Kg
Endosulfan I	ND	8.3	ug/Kg
Dieldrin	ND	8.3	ug/Kg
4,4'-DDE	ND	8.3	ug/Kg
Endrin	ND	8.3	ug/Kg
Endosulfan II	ND	8.3	ug/Kg
Endosulfan sulfate	ND	8.3	ug/Kg
4,4'-DDD	ND	8.3	ug/Kg
Endrin aldehyde	ND	8.3	ug/Kg
Endrin ketone	ND	8.3	ug/Kg
4,4'-DDT	ND	8.3	ug/Kg
Methoxychlor	ND	17	ug/Kg
Toxaphene	ND	170	ug/Kg
Chlordane (Technical)	ND	83	ug/Kg
Surrogate	%REC	;	Limits
TCMX	73		23-120
Decachlorohinhenyl	57	•	24-120

Decachlorobiphenyl 24-120

Project#: 3048_2 **Lab #:** 449877

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU1-1B **Prep:** EPA 3546 Batch#: 273477

Lab ID: 449877-002 Sampled: 08/27/21 Analysis: EPA 8081A Matrix: Soil **Received:** 08/31/21 Analyst: TRN

Basis: air dried **Prepared:** 09/08/21 **Diln Fac:** 5.000 **Analyzed:** 09/08/21

Analyte	Result	RL	Units
alpha-BHC	ND	8.3	ug/Kg
beta-BHC	ND	8.3	ug/Kg
gamma-BHC	ND	8.3	ug/Kg
delta-BHC	ND	8.3	ug/Kg
Heptachlor	ND	8.3	ug/Kg
Aldrin	ND	8.3	ug/Kg
Heptachlor epoxide	ND	8.3	ug/Kg
Endosulfan I	ND	8.3	ug/Kg
Dieldrin	ND	8.3	ug/Kg
4,4'-DDE	ND	8.3	ug/Kg
Endrin	ND	8.3	ug/Kg
Endosulfan II	ND	8.3	ug/Kg
Endosulfan sulfate	ND	8.3	ug/Kg
4,4'-DDD	ND	8.3	ug/Kg
Endrin aldehyde	ND	8.3	ug/Kg
Endrin ketone	ND	8.3	ug/Kg
4,4'-DDT	ND	8.3	ug/Kg
Methoxychlor	ND	17	ug/Kg
Toxaphene	ND	170	ug/Kg
Chlordane (Technical)	ND	83	ug/Kg
Surrogate	%REC	;	Limits
TCMX	40)	23-120
Decachlorohinhanyl	45	7	24 120

Decachlorobiphenyl 24-120 47

Project#: 3048_2 **Lab #:** 449877

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU1-1C **Prep:** EPA 3546 Batch#: 273477

Lab ID: 449877-003 Sampled: 08/27/21 Analysis: EPA 8081A Matrix: Soil **Received:** 08/31/21 Analyst: TRN

Basis: air dried **Prepared:** 09/08/21 **Diln Fac:** 5.000 **Analyzed:** 09/08/21

Analyte	Result	RL	Units
alpha-BHC	ND	8.3	ug/Kg
beta-BHC	ND	8.3	ug/Kg
gamma-BHC	ND	8.3	ug/Kg
delta-BHC	ND	8.3	ug/Kg
Heptachlor	ND	8.3	ug/Kg
Aldrin	ND	8.3	ug/Kg
Heptachlor epoxide	ND	8.3	ug/Kg
Endosulfan I	ND	8.3	ug/Kg
Dieldrin	ND	8.3	ug/Kg
4,4'-DDE	ND	8.3	ug/Kg
Endrin	ND	8.3	ug/Kg
Endosulfan II	ND	8.3	ug/Kg
Endosulfan sulfate	ND	8.3	ug/Kg
4,4'-DDD	ND	8.3	ug/Kg
Endrin aldehyde	ND	8.3	ug/Kg
Endrin ketone	ND	8.3	ug/Kg
4,4'-DDT	ND	8.3	ug/Kg
Methoxychlor	ND	17	ug/Kg
Toxaphene	ND	170	ug/Kg
Chlordane (Technical)	ND	83	ug/Kg
Surrogate	%REC	;	Limits
TCMX	61		23-120
Decachlorohinhenyl	76	3	24-120

Decachlorobiphenyl 76 24-120

Project#: 3048_2 **Lab #:** 449877

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU1-2A **Prep:** EPA 3546 Batch#: 273477 Lab ID: 449877-004 Sampled: 08/27/21 Analysis: EPA 8081A

Matrix: Soil **Received:** 08/31/21 Analyst: TRN

Basis: air dried **Prepared:** 09/08/21 **Diln Fac:** 5.000 **Analyzed:** 09/08/21

Analyte	Result	RL	Units
alpha-BHC	ND	8.3	ug/Kg
beta-BHC	ND	8.3	ug/Kg
gamma-BHC	ND	8.3	ug/Kg
delta-BHC	ND	8.3	ug/Kg
Heptachlor	ND	8.3	ug/Kg
Aldrin	ND	8.3	ug/Kg
Heptachlor epoxide	ND	8.3	ug/Kg
Endosulfan I	ND	8.3	ug/Kg
Dieldrin	ND	8.3	ug/Kg
4,4'-DDE	ND	8.3	ug/Kg
Endrin	ND	8.3	ug/Kg
Endosulfan II	ND	8.3	ug/Kg
Endosulfan sulfate	ND	8.3	ug/Kg
4,4'-DDD	ND	8.3	ug/Kg
Endrin aldehyde	ND	8.3	ug/Kg
Endrin ketone	ND	8.3	ug/Kg
4,4'-DDT	ND	8.3	ug/Kg
Methoxychlor	ND	17	ug/Kg
Toxaphene	ND	170	ug/Kg
Chlordane (Technical)	ND	83	ug/Kg
Surrogate	%REC	,	Limits
TCMX	89		23-120
Decachlorobiphenyl	83	1	24-120

Organochlorine Pesticides: Batch QC

Project#: 3048_2 **Lab #:** 449877

Location: AQS Client: Myounghee Noh & Associates

Type: BLANK Analysis: EPA 8081A Batch#: 273477

Lab ID: QC942450 Analyst: TRN **Prepared:** 09/08/21

Matrix: Soil **Analyzed:** 09/08/21 **Diln Fac: 1.000 Prep:** EPA 3546

Analyte	Result	RL	Units
alpha-BHC	ND	1.7	ug/Kg
beta-BHC	ND	1.7	ug/Kg
gamma-BHC	ND	1.7	ug/Kg
delta-BHC	ND	1.7	ug/Kg
Heptachlor	ND	1.7	ug/Kg
Aldrin	ND	1.7	ug/Kg
Heptachlor epoxide	ND	1.7	ug/Kg
Endosulfan I	ND	1.7	ug/Kg
Dieldrin	ND	1.7	ug/Kg
4,4'-DDE	ND	1.7	ug/Kg
Endrin	ND	1.7	ug/Kg
Endosulfan II	ND	1.7	ug/Kg
Endosulfan sulfate	ND	1.7	ug/Kg
4,4'-DDD	ND	1.7	ug/Kg
Endrin aldehyde	ND	1.7	ug/Kg
Endrin ketone	ND	1.7	ug/Kg
4,4'-DDT	ND	1.7	ug/Kg
Methoxychlor	ND	3.3	ug/Kg
Toxaphene	ND	33	ug/Kg
Chlordane (Technical)	ND	17	ug/Kg
Surrogate	%REC		Limits
TCMX	98		23-120
De se alal a vala imba a vi	70		04.400

Surrogate	%REC	Limits
TCMX	98	23-120
Decachlorobiphenyl	73	24-120

Organochlorine Pesticides: Batch QC

Lab #: 449877 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Type: BS Batch#: 273477 Analysis: EPA 8081A

Location: AQS

Lab ID: QC942451 Analyst: TRN **Prepared:** 09/08/21

Matrix: Soil **Analyzed:** 09/08/21 **Diln Fac: 1.000 Prep:** EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	Qual
alpha-BHC	16.67	22.61	136 *	22-129	ug/Kg	
beta-BHC	16.67	21.89	131 *	28-125	ug/Kg	
gamma-BHC	16.67	22.88	137 *	22-128	ug/Kg	
delta-BHC	16.67	22.88	137 *	24-131	ug/Kg	
Heptachlor	16.67	20.70	124	18-124	ug/Kg	
Aldrin	16.67	16.72	100	23-120	ug/Kg	
Heptachlor epoxide	16.67	17.43	105	26-120	ug/Kg	
Endosulfan I	16.67	19.73	118	25-126	ug/Kg	
Dieldrin	16.67	20.35	122	23-124	ug/Kg	
4,4'-DDE	16.67	19.18	115	28-121	ug/Kg	
Endrin	16.67	19.01	114	25-127	ug/Kg	
Endosulfan II	16.67	19.04	114	29-121	ug/Kg	
Endosulfan sulfate	16.67	15.04	90	30-121	ug/Kg	
4,4'-DDD	16.67	17.10	103	26-120	ug/Kg	
Endrin aldehyde	16.67	5.094	31	10-120	ug/Kg	
Endrin ketone	16.67	14.47	87	28-125	ug/Kg	
4,4'-DDT	16.67	13.14	79	22-125	ug/Kg	
Methoxychlor	16.67	12.70	76	28-130	ug/Kg	#
Surrogate				%REC	Limits	
TCMX				104	23-120	
Decachlorobiphenyl				75	24-120	

Organochlorine Pesticides: Batch QC

Lab #: 449877 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Analyst: TRN

Type: BSD Batch#: 273477 Analysis: EPA 8081A

 Lab ID:
 QC942452
 Prepared:
 09/08/21

 Matrix:
 Soil
 Analyzed:
 09/08/21

Diln Fac: 1.000 Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim	Qual
alpha-BHC	16.67	20.04	120	22-129	ug/Kg	12	20	
beta-BHC	16.67	18.20	109	28-125	ug/Kg	18	20	
gamma-BHC	16.67	20.32	122	22-128	ug/Kg	12	20	
delta-BHC	16.67	20.04	120	24-131	ug/Kg	13	20	
Heptachlor	16.67	17.26	104	18-124	ug/Kg	18	20	
Aldrin	16.67	14.33	86	23-120	ug/Kg	15	20	
Heptachlor epoxide	16.67	14.87	89	26-120	ug/Kg	16	20	
Endosulfan I	16.67	16.98	102	25-126	ug/Kg	15	20	
Dieldrin	16.67	16.50	99	23-124	ug/Kg	21 *	20	
4,4'-DDE	16.67	16.15	97	28-121	ug/Kg	17	20	
Endrin	16.67	14.01	84	25-127	ug/Kg	30 *	20	
Endosulfan II	16.67	16.73	100	29-121	ug/Kg	13	20	
Endosulfan sulfate	16.67	14.06	84	30-121	ug/Kg	7	20	
4,4'-DDD	16.67	15.03	90	26-120	ug/Kg	13	20	
Endrin aldehyde	16.67	6.963	42	10-120	ug/Kg	31 *	20	
Endrin ketone	16.67	14.40	86	28-125	ug/Kg	0	20	
4,4'-DDT	16.67	12.02	72	22-125	ug/Kg	9	20	
Methoxychlor	16.67	11.79	71	28-130	ug/Kg	7	20	#
Surrogate					%REC	L	imits	
TCMX					91	2	3-120	
Decachlorobiphenyl					69	2	4-120	

Legend

RPD: Relative Percent Difference

^{#:} CCV drift outside limits; average CCV drift within limits per method requirements

^{*:} Value is outside QC limits

Metals Analytical Report

		Metais Analy	ticai ne	port	
Lab #: 4	49877			Proje	ect#: 3048_2
Client: N	Myounghee Noh & Ass	ociates		Locat	ion: AQS
Field ID:	3048-DU1-1A	Diln Fac:	1.000	Analyzed:	09/09/21
Type:	SAMPLE	Batch#:	273561	Prep:	EPA 3050B
Lab ID:	449877-001	Sampled:	08/27/21	Analysis:	EPA 6010B
Matrix:	Soil	Received:	08/31/21	Analyst:	KLN
Basis:	air dried	Prepared:	09/08/21		
Analyte			Result	RL	Units
Arsenic			1.3	0.49	mg/Kg
Lead			8.6	0.49	mg/Kg
Field ID:	3048-DU1-1B	Diln Fac:	1.000	Analyzed:	09/09/21
	SAMPLE	Batch#:	273561	-	EPA 3050B
	449877-002	Sampled:		•	EPA 6010B
Matrix:		Received:		Analyst:	
	air dried	Prepared:		, , , ,	
Analyte			Result	RL	Units
Arsenic			1.7	0.49	mg/Kg
Lead			8.4	0.49	mg/Kg
Field ID:	3048-DU1-1C	Diln Fac:	1.000	Analyzed:	09/09/21
Type:	SAMPLE	Batch#:	273561	Prep:	EPA 3050B
Lab ID:	449877-003	Sampled:	08/27/21	Analysis:	EPA 6010B
Matrix:	Soil	Received:	08/31/21	Analyst:	KLN
Basis:	air dried	Prepared:	09/08/21		
Analyte			Result	RL	Units
Arsenic			1.4	0.49	mg/Kg
Lead			9.8	0.49	mg/Kg
Field ID:	3048-DU1-2A	Diln Fac:	1.000	Analyzed:	09/09/21
	SAMPLE		273561	•	EPA 3050B
	449877-004	Sampled:			EPA 6010B
Matrix:		Received:		Analyst:	
	air dried	Prepared:			
Analyte			Result	RL	Units
Arsenic			1.1	0.49	mg/Kg
Lead			7.9	0.49	mg/Kg

Metals Analytical Report

Lab #: 449877 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Type: BLANK Batch#: 273561 Analysis: EPA 6010B

Location: AQS

Matrix: Soil Analyzed: 09/09/21

Diln Fac: 1.000 Prep: EPA 3050B

Analyte	Result	RL	Units	
Arsenic	ND	0.50	mg/Kg	
Lead	ND	0.50	mg/Kg	

Metals Analytical Report: Batch QC

Lab #: 449877 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BS Batch#: 273561 Analysis: EPA 6010B

Matrix: Soil Analyzed: 09/09/21

Diln Fac: 1.000 Prep: EPA 3050B

Analyte	Spiked	Result	%REC	Limits	Units
Arsenic	50.00	49.53	99	80-120	mg/Kg
Lead	50.00	50.20	100	80-120	mg/Kg

Type: BSD Batch#: 273561 Analysis: EPA 6010B

Matrix: Soil Analyzed: 09/09/21

Diln Fac: 1.000 Prep: EPA 3050B

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Arsenic	50.00	49.86	100	80-120	mg/Kg	1	20
Lead	50.00	50.27	101	80-120	mg/Kg	0	20

Legend

RPD: Relative Percent Difference

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 449991

Report Level: II

Report Date: 09/15/2021

Analytical Report *prepared for:*

Jennah Oshiro Myounghee Noh & Associates 99-1046 Iwaena Street 210A Aiea, HI 96701

Project: 3048_2 - AQS

Authorized for release by:

Sophia Baughman, Project Manager Assistant sophia.baughman@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105, CDC ELITE Member

Sample Summary

Jennah Oshiro

Myounghee Noh & Associates

99-1046 Iwaena Street

210A

Aiea, HI 96701

Lab Job #: 449991

Project No: 3048_2

Location: AQS

Date Received: 09/02/21

Sample ID	Lab ID	Collected	Matrix
3048-DU4-1A	449991-001	08/30/21 14:06	Soil
3048-DU4-2A	449991-002	08/30/21 14:06	Soil
3048-DU5-1A	449991-003	08/31/21 10:10	Soil
3048-DU5-2A	449991-004	08/31/21 10:10	Soil
3048-DU3-1A	449991-005	08/31/21 16:05	Soil
3048-DU3-2A	449991-006	08/31/21 16:05	Soil

Case Narrative

Myounghee Noh & Associates 99-1046 Iwaena Street 210A

Aiea, HI 96701 Jennah Oshiro Lab Job Number: 449991
Project No: 3048_2
Location: AQS

Date Received: 09/02/21

This data package contains sample and QC results for six soil samples, requested for the above referenced project on 09/02/21. The samples were received cold and intact. Multi-Increment Sampling (ISM) was performed on all samples in accordance with HDOH specifications.

TPH-Extractables by GC (EPA 8015M):

No analytical problems were encountered.

Semivolatile Organics by GC/MS (EPA 8270C):

A number of samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

Pesticides (EPA 8081A):

High RPD was observed for many analytes in the BS/BSD for batch 273602; these analytes were not detected at or above the RL in the associated samples. Many samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

PCBs (EPA 8082):

Low surrogate recovery was observed for decachlorobiphenyl (PCB) in 3048-DU4-2A (lab # 449991-002). Many samples were diluted due to the dark color of the sample extracts. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7471A):

No analytical problems were encountered.

Moisture (ASTM D2216):

No analytical problems were encountered.

CHAIN OF CUSTODY

ENTH	IALPY	•		Chair	Page of
Formerly Curtis & Tom		C&T LOGIN	1# 449991	ANALYTICAL	
2323 Fifth Street Berkeley, CA 94710	Phone (510) 486- Fax (510) 486-	-0532		NE)	
Project No: 3048_2 Project Name: A&S	Sampler:	<u>Jenvala Oshiv</u> Jenvala Oshiv		Sies for	
Project P. O. No: 3048-2		Myounglice Non +	*	17 12 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Company:			20/2 1 1 1 1 1 1 1 1 1	
Turnaround Time: Rush		nnah (gmail.		17 015 170	
	J		CHEMICAL	S S S S S S S S S S S S S S S S S S S	
Lab Sample ID.	SAMPLING		RESERVATIVE	되어 19	
No.	Date Time	5	1 3 2 4 E 3 2 4	이 불 영 호 호 호	
	Collected Collected	Water Solid # of C	H2SO4 HNO3 NGOH None	以上30000011	
1 3048-DU4-1A	8/20/21 14:06	2 X I			
2 3048-DU4-2A 3 3048-DU5-1A	8/30/21 14:00				
4 3048-DUS- 2A	8/31/21 10:10	1 1/3 1 1 1 1	 		
5 3048-DU3-1A	8/31/23 16:05				
6 3048-DU3-ZA	8/31/21 16:05				
			- - - - - - - -		
· ·				+ + + + + + + + + + + + + + + + + + + +	
Notes:		25:10000005			
Notes:	SAMPLE RECEIPT	RELINQUISHED	ALI .	RECEIV	
	RECEIPT Intact	The state of the s	DATE IN TIME: 10:25	1 ful	DATÉ: TIME;
	☐ Cold	My for a	9/2/2/ TIME: 1610	(ab)	9/3/LI 123
	☐ On Ice		DATE: TIME:		DATE: TIME:
	☐ Ambient ☐				:

SAMPLE RECEIPT CHECKLIST		7.0	7.2
Section 1: Login # 49991 Client: MW		3	
	•	ENT	HALP'
Date Received: 9/2/2 Project:		1 1 1	LITICA.
Section 2: Shipping info (if applicable) Fed By 7747 0765 \$274		_	
Are custody seals present? \(\text{No, or } \text{Ves. If yes, where?} \) On cooler, \(\text{O} \) on sample \(\text{Vignature,} \(\text{Date:} \) On the limit of the line limit of the limit of the limit of the limit of the limit of t	es, 🗆 on pa	ckage	
Were custody seals intact upon arrival? ☐ Yes ☐ No ☐ N/A			
Samples received in a cooler? Yes, how many? No (skip Section 3 below)			
If no cooler Sample Temp (°C): using IR Gun # □ B, or □ C			
☐ Samples received on ice directly from the field. Cooling process had begun			
		_	
Section 3: Important : Notify PM if temperature 6	exceeds 6°C	or arriv	froze
Packing in cooler: (if other, describe)	_		
☐ Bubble Wrap, ☐ Foam blocks, ☐ Bags, ☐ None, ☐ Cloth material, ☐ Cardboard, ☐ Styrofoam	, \square Paper to	owels	
☐ Samples received on ice directly from the field. Cooling process had begun			
Type of ice used: ☐ Wet, ☐ Blue/Gel, ☐ None Temperature blank(s) included Temperature measured using ☐ Thermometer ID:, or IR Gun # ☐ B ☐ C	? 🗌 Yes, [□ No	
Temperature measured using D Thermometer ID:, or IR Gun # B D C			
Cooler Temp (°C): #1: <u> </u>	, #7:		
Section 4:	YES	NO	N/A
Were custody papers dry, filled out properly, and the project identifiable			
Were Method 5035 sampling containers present?			
If YES, what time were they transferred to freezer?			
Did all bottles arrive unbroken/unopened?			
Are there any missing / extra samples?			
Are samples in the appropriate containers for indicated tests?			9
Are sample labels present, in good condition and complete?			
Does the container count match the COC?			
Do the sample labels agree with custody papers?			
Was sufficient amount of sample sent for tests requested?			
Did you change the hold time in LIMS for unpreserved VOAs?			
Did you change the hold time in LIMS for preserved terracores?			
Are bubbles > 6mm present in VOA samples?			
Was the client contacted concerning this sample delivery?			
If YES, who was called?ByDate:			
Section 5:	YES	NO	N/A
Are the samples appropriately preserved? (if N/A, skip the rest of section 5)			
Did you check preservatives for all bottles for each sample?			
Did you document your preservative check?			
pH strip lot#, pH strip lot#, pH strip lot#			
Preservative added:			
□ H2SO4 lot# added to sampleson,	/at		
☐ HCL lot# added to samples on,	/at		
<u> </u>	/at		
□ NaOH lot# added to samples on,	/at		
Section 6:			
Explanations/Comments:			
Date Logged in 9/2/21 By (print) MAG (sign)			
Date Labeled 9/2/7 By (print) MAC (sign)	-		-
Date Labeled $\{f(x), (y)\}$ by $\{y\}$ init $f(x)$ $f(y)$ $f(y)$	•		

Enthalpy Analytical - Berkeley Rev.15.1, 09/13/2019

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Myounghee Noh and Associates	Project: <u>3048-2</u>			
Date Received: 9/3/21	Sampler's Name Present:	✓Yes	No	
Section 2				
Sample(s) received in a cooler? Yes, How many? 1	No (skin section 2)		e Temp (°C)	
Sample Temp (°C), One from each cooler: #1: 2.2		#4:	(No Cooler)	•
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accepted			for sample	s collected
the same day as sample receipt to have a higher temperat				000,0000
Shipping Information:				
Section 3				
Was the cooler packed with:	Bubble Wrap Styro	foam		
Paper None	Other			
Cooler Temp (°C): #1: <u>2.4</u> #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		<i>\\</i>		
Are sample IDs present?		<i>\\</i>		
Are sampling dates & times present?		~		
Is a relinquished signature present?		~		·
Are the tests required clearly indicated on the COC?		~		
Are custody seals present?			/	
If custody seals are present, were they intact?				~
Are all samples sealed in plastic bags? (Recommended for		'		
Did all samples arrive intact? If no, indicate in Section 4 b		~		<u> </u>
Did all bottle labels agree with COC? (ID, dates and times		~		
Were the samples collected in the correct containers for	· · · · · · · · · · · · · · · · · · ·	V		
Are the containers labeled with the correct preserv				~
Is there headspace in the VOA vials greater than 5-6 mm				V
Was a sufficient amount of sample submitted for the req	uested tests?	V		
Section 5 Explanations/Comments				
•				
Section 6			`	
For discrepancies, how was the Project Manager notified	=	-		 -
L	Email (email sent to	'on):	/	
Project Manager's response:				
Completed By:	_Date: <u>9137~1</u>			

800-322-5555 www.gls-us.com

Ship From

ENTHALPY ANALYTICAL BERKELEY SERVICE CENTER 2323 5TH STREET BERKELEY, CA 94710

Ship To ENTHALPY ANALYTICAL (ORG) SAMPLE RECEIVING 931 W BARKLEY AVE. ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

Tracking #: 554512247

CPS

ORANGE

22/14

S10003H

. *

ORC CA927-EH1

Print Date: 9/2/2021 1:45 PM

Package 4 of 5

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the General Logistics Systems US, Inc. (GLS) service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gls-us.com.

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: Myounghee Noh & Associates	Project:_ AQS, 3048-2			
Date Received: 09/09/21	Sampler's Name Present:	✓Yes	No	
Section 2				
Sample(s) received in a cooler? <a>Yes , How many?	1 No (skip section 2)		e Temp (°C) (No Cooler	_
Sample Temp (°C), One from each cooler: #1: 4.5			(NO COOIEI	,
(Acceptance range is < 6°C but not frozen (for Microbiology samples, accep			for sample	– es collected
the same day as sample receipt to have a higher tempero	ture as long as there is evidence that co	ooling has beg	un.)	
Shipping Information: GLS				
Section 3				
Was the cooler packed with:	Bubble Wrap Styre			
Cooler Temp (°C): #1: 1.0 #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		V		,
Are sample IDs present?		V		
Are sampling dates & times present?		V		
Is a relinquished signature present?		~		
Are the tests required clearly indicated on the COC?		~		
Are custody seals present?			~	
If custody seals are present, were they intact?				V
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)			V
Did all samples arrive intact? If no, indicate in Section 4		~		
Did all bottle labels agree with COC? (ID, dates and time		V		
Were the samples collected in the correct containers fo		V		
Are the containers labeled with the correct preser				'
Is there headspace in the VOA vials greater than 5-6 mn				V
Was a sufficient amount of sample submitted for the re	quested tests?			
Section 5 Explanations/Comments Received MIS samples for metals and 8081/80)82.			
Section 6				
For discrepancies, how was the Project Manager notifie	d? Verbal PM Initials:	_ Date/Time		
, ,	Email (email sent to	_		
Project Manager's response:				
Completed By:	_Date:9/9/2/			
Fash-lan Analysis-1 1-11	Mantana Fundananantal Currentes			

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

800-322-5555 www.gls-us.com

Ship From

ENTHALPY ANALYTICAL BERKELEY SERVICE CENTER 2323 5TH STREET BERKELEY, CA 94710

Ship To

ENTHALPY ANALYTICAL (ORG) SAMPLE RECEIVING 931 W BARKLEY AVE. ORANGE, CA 92868

COD: \$0.00 Weight: 0 lb(s) Reference:

Delivery Instructions:

Signature Type: STANDARD

Tracking #: 554563087

CPS

ORANGE

S10003H

ORC CA927-EH1

Print Date: 9/8/2021 3:43 PM

Package 1 of 4

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

Step 1: Use the "Print Label" button on this page to print the shipping label on a laser or inkjet printer.

Step 2: Fold this page in half.

Step 3: Securely attach this label to your package and do not cover the barcode.

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the General Logistics Systems US, Inc. (GLS) service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gls-us.com.

1.0/4.5

Extractable Carbon Chain

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU4-1A
 Moisture:
 13%
 Prepared:
 09/07/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/07/21

 Lab ID:
 449991-001
 Batch#:
 273441
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/30/21
 Analysis:
 EPA 8015M

Basis: dry Received: 09/02/21 Analyst: MES

 Analyte
 Result
 RL
 Units

 DRO C10-C28
 ND
 23
 mg/Kg

 RRO C28-C44
 ND
 46
 mg/Kg

 Surrogate
 %REC
 Limits

 n-Triacontane
 90
 70-130

 Field ID:
 3048-DU4-2A
 Moisture:
 13%
 Prepared:
 09/07/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/07/21

 Lab ID:
 449991-002
 Batch#:
 273441
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/30/21
 Analysis:
 EPA 8015M

Basis: dry Received: 09/02/21 Analyst: MES

 Analyte
 Result
 RL
 Units

 DRO C10-C28
 ND
 23
 mg/Kg

 RRO C28-C44
 ND
 46
 mg/Kg

 Surrogate
 %REC
 Limits

 n-Triacontane
 91
 70-130

 Field ID:
 3048-DU5-1A
 Moisture:
 15%
 Prepared:
 09/07/21

 Type:
 SAMPLE
 Diln Fac:
 1.000
 Analyzed:
 09/07/21

 Lab ID:
 449991-003
 Batch#:
 273441
 Prep:
 EPA 3580

 Matrix:
 Soil
 Sampled:
 08/31/21
 Analysis:
 EPA 8015M

Basis: dry Received: 09/02/21 Analyst: MES

RL Analyte Result **Units** DRO C10-C28 ND 23 mg/Kg RRO C28-C44 ND 47 mg/Kg Surrogate %REC Limits n-Triacontane 75 70-130

Extractable Carbon Chain

Lab #: 449991 Project#: 3048 2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU5-2A **Prepared:** 09/07/21 Moisture: 12% Type: SAMPLE **Diln Fac: 1.000 Analyzed:** 09/07/21 Lab ID: 449991-004 Batch#: 273441 **Prep:** EPA 3580 Matrix: Soil Sampled: 08/31/21 Analysis: EPA 8015M

Basis: dry Received: 09/02/21 Analyst: MES

RL Analyte Result **Units** DRO C10-C28 ND 23 mg/Kg RRO C28-C44 ND 45 mg/Kg

%REC Surrogate Limits n-Triacontane 77 70-130

Field ID: 3048-DU3-1A Moisture: 13% Prepared: 09/07/21 Type: SAMPLE **Diln Fac: 1.000 Analyzed:** 09/07/21 Lab ID: 449991-005 Batch#: 273441 **Prep:** EPA 3580 Matrix: Soil Sampled: 08/31/21 Analysis: EPA 8015M

Basis: dry Received: 09/02/21 Analyst: MES

Analyte RL Result **Units** DRO C10-C28 ND 23 mg/Kg RRO C28-C44 ND 46 mg/Kg

Surrogate %REC Limits 70-130 n-Triacontane

Field ID: 3048-DU3-2A Moisture: 10% **Prepared:** 09/07/21 Type: SAMPLE **Diln Fac: 1.000 Analyzed:** 09/07/21 Lab ID: 449991-006 Batch#: 273441 **Prep:** EPA 3580 Matrix: Soil Sampled: 08/31/21 Analysis: EPA 8015M

Received: 09/02/21 Analyst: MES Basis: dry

RL Analyte Result **Units** DRO C10-C28 ND 22 mg/Kg RRO C28-C44 ND 44 mg/Kg Surrogate %REC Limits n-Triacontane 84 70-130

2 of 3

Extractable Carbon Chain

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Type: BLANK Batch#: 273441 Analysis: EPA 8015M

Location: AQS

Matrix: Soil Analyzed: 09/07/21

Diln Fac: 1.000 Prep: EPA 3580

Analyte	Result	RL	Units
DRO C10-C28	ND	20	mg/Kg
RRO C28-C44	ND	40	mg/Kg
Surrogate	%REC		Limits
n-Triacontane	101		70-130

Extractable Carbon Chain: Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Analyst: MES

Analysis: EPA 8015M Type: BS Batch#: 273441

Analyzed: 09/07/21

Lab ID: QC942337 **Prepared:** 09/07/21 Matrix: Soil

Diln Fac: 1.000 **Prep:** EPA 3580

Analyte	Spiked	Result	%REC	Limits	Units
DRO C10-C28	498.3	445.2	89	76-122	mg/Kg
Surrogate			%REC		Limits
n-Triacontane			99		70-130

Type: BSD Analysis: EPA 8015M Batch#: 273441

Lab ID: QC942338 **Prepared:** 09/07/21 Analyst: MES

Matrix: Soil **Analyzed:** 09/07/21 **Diln Fac:** 1.000 **Prep:** EPA 3580

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
DRO C10-C28	496.7	412.8	83	76-122	mg/Kg	7	20
Surrogate				%REC		Limits	
n-Triacontane				97		70-130	

Legend

RPD: Relative Percent Difference

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU4-1A
 Diln Fac:
 10.00
 Analyzed:
 09/09/21

 Lab ID:
 449991-001
 Batch#:
 273582
 Prep:
 EPA 3546

 Matrix:
 Soil
 Sampled:
 08/30/21
 Analysis:
 EPA 8270C

Basis: dry Received: 09/02/21 Analyst: HQN

Moisture: 13% Prepared: 09/09/21

Analyte	Result	RL	Units
Carbazole	ND	1,900	ug/Kg
I-Methylnaphthalene	ND	1,900	ug/Kg ug/Kg
Pyridine	ND	1,900	ug/Kg ug/Kg
N-Nitrosodimethylamine	ND	1,900	ug/Kg ug/Kg
Phenol	ND		
Aniline	ND	1,900	ug/Kg
	ND ND	1,900	ug/Kg
ois(2-Chloroethyl)ether 2-Chlorophenol	ND ND	9,200	ug/Kg
		1,900	ug/Kg
I,3-Dichlorobenzene	ND ND	1,900	ug/Kg
,4-Dichlorobenzene	ND ND	1,900	ug/Kg
Benzyl alcohol	ND ND	1,900	ug/Kg
,2-Dichlorobenzene	ND	1,900	ug/Kg
2-Methylphenol	ND	1,900	ug/Kg
ois(2-Chloroisopropyl) ether	ND	1,900	ug/Kg
3-,4-Methylphenol	ND	3,100	ug/Kg
N-Nitroso-di-n-propylamine	ND	1,900	ug/Kg
lexachloroethane	ND	1,900	ug/Kg
litrobenzene	ND	9,200	ug/Kg
sophorone	ND	1,900	ug/Kg
2-Nitrophenol	ND	1,900	ug/Kg
2,4-Dimethylphenol	ND	1,900	ug/Kg
Benzoic acid	ND	9,200	ug/Kg
sis(2-Chloroethoxy)methane	ND	1,900	ug/Kg
2,4-Dichlorophenol	ND	1,900	ug/Kg
,2,4-Trichlorobenzene	ND	1,900	ug/Kg
Naphthalene	ND	1,900	ug/Kg
-Chloroaniline	ND	1,900	ug/Kg
·lexachlorobutadiene	ND	1,900	ug/Kg
-Chloro-3-methylphenol	ND	1,900	ug/Kg
-Methylnaphthalene	ND	1,900	ug/Kg
lexachlorocyclopentadiene	ND	9,200	ug/Kg
2,4,6-Trichlorophenol	ND	1,900	ug/Kg
2,4,5-Trichlorophenol	ND	1,900	ug/Kg
2-Chloronaphthalene	ND	1,900	ug/Kg
-Nitroaniline	ND	1,900	ug/Kg
Dimethylphthalate	ND	1,900	ug/Kg
cenaphthylene	ND	1,900	ug/Kg
,6-Dinitrotoluene	ND	1,900	ug/Kg
-Nitroaniline	ND	1,900	ug/Kg
Acenaphthene	ND	1,900	ug/Kg

Project#: 3048_2 **Lab #:** 449991 Client: Myounghee Noh & Associates Location: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	9,200	ug/Kg
4-Nitrophenol	ND	1,900	ug/Kg
Dibenzofuran	ND	1,900	ug/Kg
2,4-Dinitrotoluene	ND	1,900	ug/Kg
Diethylphthalate	ND	1,900	ug/Kg
Fluorene	ND	1,900	ug/Kg
4-Chlorophenyl-phenylether	ND	1,900	ug/Kg
4-Nitroaniline	ND	1,900	ug/Kg
4,6-Dinitro-2-methylphenol	ND	1,900	ug/Kg
N-Nitrosodiphenylamine	ND	1,900	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	1,900	ug/Kg
4-Bromophenyl-phenylether	ND	1,900	ug/Kg
Hexachlorobenzene	ND	1,900	ug/Kg
Pentachlorophenol	ND	9,200	ug/Kg
Phenanthrene	ND	1,900	ug/Kg
Anthracene	ND	1,900	ug/Kg
Di-n-butylphthalate	ND	1,900	ug/Kg
Fluoranthene	ND	1,900	ug/Kg
Benzidine	ND	9,200	ug/Kg
Pyrene	ND	1,900	ug/Kg
Butylbenzylphthalate	ND	1,900	ug/Kg
3,3'-Dichlorobenzidine	ND	9,200	ug/Kg
Benzo(a)anthracene	ND	1,900	ug/Kg
Chrysene	ND	1,900	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	1,900	ug/Kg
Di-n-octylphthalate	ND	1,900	ug/Kg
Benzo(b)fluoranthene	ND	1,900	ug/Kg
Benzo(k)fluoranthene	ND	1,900	ug/Kg
Benzo(a)pyrene	ND	1,900	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	1,900	ug/Kg
Dibenz(a,h)anthracene	ND	1,900	ug/Kg
Benzo(g,h,i)perylene	ND	1,900	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	41	29-120	
Phenol-d6	43	30-1	20
2,4,6-Tribromophenol	53	32-1	20
Nitrobenzene-d5	51	33-120	

Nitrobenzene-d5 33-120 51 2-Fluorobiphenyl 55 39-120 44-125 Terphenyl-d14 56

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU4-2A **Diln Fac:** 1.000 **Analyzed:** 09/09/21 **Lab ID:** 449991-002 Batch#: 273582 **Prep:** EPA 3546 Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/30/21

Basis: dry Received: 09/02/21 Analyst: HQN

Moisture: 13% **Prepared:** 09/09/21

Analyte	Result	RL	Units
Carbazole	ND	190	ug/Kg
1-Methylnaphthalene	ND	190	ug/Kg
Pyridine	ND	190	ug/Kg
N-Nitrosodimethylamine	ND	190	ug/Kg
Phenol	ND	190	ug/Kg
Aniline	ND	190	ug/Kg
ois(2-Chloroethyl)ether	ND	910	ug/Kg
2-Chlorophenol	ND	190	ug/Kg
1,3-Dichlorobenzene	ND	190	ug/Kg
1,4-Dichlorobenzene	ND	190	ug/Kg
Benzyl alcohol	ND	190	ug/Kg
1,2-Dichlorobenzene	ND	190	ug/Kg
2-Methylphenol	ND	190	ug/Kg
pis(2-Chloroisopropyl) ether	ND	190	ug/Kg
3-,4-Methylphenol	ND	300	ug/Kg
N-Nitroso-di-n-propylamine	ND	190	ug/Kg
Hexachloroethane	ND	190	ug/Kg
Nitrobenzene	ND	910	ug/Kg
sophorone	ND	190	ug/Kg
2-Nitrophenol	ND	190	ug/Kg
2,4-Dimethylphenol	ND	190	ug/Kg
Benzoic acid	ND	910	ug/Kg
pis(2-Chloroethoxy)methane	ND	190	ug/Kg
2,4-Dichlorophenol	ND	190	ug/Kg
,2,4-Trichlorobenzene	ND	190	ug/Kg
Naphthalene	ND	190	ug/Kg
4-Chloroaniline	ND	190	ug/Kg
Hexachlorobutadiene	ND	190	ug/Kg
4-Chloro-3-methylphenol	ND	190	ug/Kg
2-Methylnaphthalene	ND	190	ug/Kg
Hexachlorocyclopentadiene	ND	910	ug/Kg
2,4,6-Trichlorophenol	ND	190	ug/Kg
2,4,5-Trichlorophenol	ND	190	ug/Kg
2-Chloronaphthalene	ND	190	ug/Kg
2-Nitroaniline	ND	190	ug/Kg
Dimethylphthalate	ND	190	ug/Kg
Acenaphthylene	ND	190	ug/Kg
2,6-Dinitrotoluene	ND	190	ug/Kg
3-Nitroaniline	ND	190	ug/Kg
Acenaphthene	ND	190	ug/Kg

Lab #: 449991Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	910	ug/Kg
4-Nitrophenol	ND	190	ug/Kg
Dibenzofuran	ND	190	ug/Kg
2,4-Dinitrotoluene	ND	190	ug/Kg
Diethylphthalate	ND	190	ug/Kg
Fluorene	ND	190	ug/Kg
4-Chlorophenyl-phenylether	ND	190	ug/Kg
4-Nitroaniline	ND	190	ug/Kg
4,6-Dinitro-2-methylphenol	ND	190	ug/Kg
N-Nitrosodiphenylamine	ND	190	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	190	ug/Kg
4-Bromophenyl-phenylether	ND	190	ug/Kg
Hexachlorobenzene	ND	190	ug/Kg
Pentachlorophenol	ND	910	ug/Kg
Phenanthrene	ND	190	ug/Kg
Anthracene	ND	190	ug/Kg
Di-n-butylphthalate	ND	190	ug/Kg
Fluoranthene	ND	190	ug/Kg
Benzidine	ND	910	ug/Kg
Pyrene	ND	190	ug/Kg
Butylbenzylphthalate	ND	190	ug/Kg
3,3'-Dichlorobenzidine	ND	910	ug/Kg
Benzo(a)anthracene	ND	190	ug/Kg
Chrysene	ND	190	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	190	ug/Kg
Di-n-octylphthalate	ND	190	ug/Kg
Benzo(b)fluoranthene	ND	190	ug/Kg
Benzo(k)fluoranthene	ND	190	ug/Kg
Benzo(a)pyrene	ND	190	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	190	ug/Kg
Dibenz(a,h)anthracene	ND	190	ug/Kg
Benzo(g,h,i)perylene	ND	190	ug/Kg

Surrogate	%REC	Limits
2-Fluorophenol	44	29-120
Phenol-d6	50	30-120
2,4,6-Tribromophenol	56	32-120
Nitrobenzene-d5	60	33-120
2-Fluorobiphenyl	61	39-120
Terphenyl-d14	71	44-125

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU5-1A **Diln Fac:** 4.000 **Analyzed:** 09/09/21 **Lab ID:** 449991-003 Batch#: 273582 **Prep:** EPA 3546 Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/31/21

Basis: dry Received: 09/02/21 Analyst: HQN

Moisture: 15% Prepared: 09/09/21

Analyte	Result	RL	Units
Carbazole	ND ND	790	ug/Kg
I-Methylnaphthalene	ND	790	ug/Kg
Pyridine	ND	790	ug/Kg
N-Nitrosodimethylamine	ND	790	ug/Kg
Phenol	ND	790	ug/Kg
Aniline	ND	790	ug/Kg
pis(2-Chloroethyl)ether		,800	ug/Kg
2-Chlorophenol	ND	790	ug/Kg
I,3-Dichlorobenzene	ND	790	ug/Kg
1,4-Dichlorobenzene	ND	790	ug/Kg
Benzyl alcohol	ND	790	ug/Kg
I,2-Dichlorobenzene	ND	790	ug/Kg
2-Methylphenol	ND	790	ug/Kg
pis(2-Chloroisopropyl) ether	ND	790	ug/Kg
3-,4-Methylphenol		,300	ug/Kg
N-Nitroso-di-n-propylamine	ND	790	ug/Kg
Hexachloroethane	ND	790	ug/Kg
Nitrobenzene		,800	ug/Kg
sophorone	ND	790	ug/Kg
2-Nitrophenol	ND	790	ug/Kg
2,4-Dimethylphenol	ND	790	ug/Kg
Benzoic acid	ND 3	,800	ug/Kg
pis(2-Chloroethoxy)methane	ND	790	ug/Kg
2,4-Dichlorophenol	ND	790	ug/Kg
1,2,4-Trichlorobenzene	ND	790	ug/Kg
Naphthalene	ND	790	ug/Kg
1-Chloroaniline	ND	790	ug/Kg
Hexachlorobutadiene	ND	790	ug/Kg
1-Chloro-3-methylphenol	ND	790	ug/Kg
2-Methylnaphthalene	ND	790	ug/Kg
Hexachlorocyclopentadiene	ND 3	,800	ug/Kg
2,4,6-Trichlorophenol	ND	790	ug/Kg
2,4,5-Trichlorophenol	ND	790	ug/Kg
2-Chloronaphthalene	ND	790	ug/Kg
2-Nitroaniline	ND	790	ug/Kg
Dimethylphthalate	ND	790	ug/Kg
Acenaphthylene	ND	790	ug/Kg
2,6-Dinitrotoluene	ND	790	ug/Kg
3-Nitroaniline	ND	790	ug/Kg
Acenaphthene	ND	790	ug/Kg

Lab #: 449991Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	3,800	ug/Kg
4-Nitrophenol	ND	790	ug/Kg
Dibenzofuran	ND	790	ug/Kg
2,4-Dinitrotoluene	ND	790	ug/Kg
Diethylphthalate	ND	790	ug/Kg
Fluorene	ND	790	ug/Kg
4-Chlorophenyl-phenylether	ND	790	ug/Kg
4-Nitroaniline	ND	790	ug/Kg
4,6-Dinitro-2-methylphenol	ND	790	ug/Kg
N-Nitrosodiphenylamine	ND	790	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	790	ug/Kg
4-Bromophenyl-phenylether	ND	790	ug/Kg
Hexachlorobenzene	ND	790	ug/Kg
Pentachlorophenol	ND	3,800	ug/Kg
Phenanthrene	ND	790	ug/Kg
Anthracene	ND	790	ug/Kg
Di-n-butylphthalate	ND	790	ug/Kg
Fluoranthene	ND	790	ug/Kg
Benzidine	ND	3,800	ug/Kg
Pyrene	ND	790	ug/Kg
Butylbenzylphthalate	ND	790	ug/Kg
3,3'-Dichlorobenzidine	ND	3,800	ug/Kg
Benzo(a)anthracene	ND	790	ug/Kg
Chrysene	ND	790	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	790	ug/Kg
Di-n-octylphthalate	ND	790	ug/Kg
Benzo(b)fluoranthene	ND	790	ug/Kg
Benzo(k)fluoranthene	ND	790	ug/Kg
Benzo(a)pyrene	ND	790	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	790	ug/Kg
Dibenz(a,h)anthracene	ND	790	ug/Kg
Benzo(g,h,i)perylene	ND	790	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	40	29-12	20
Phenol-d6	43	30-12	20
2,4,6-Tribromophenol	49	32-12	20
Nitrobenzene-d5	45	33-12	20

Terphenyl-d14

Legend

ND: Not Detected

RL: Reporting Limit

2-Fluorobiphenyl

49

55

39-120

44-125

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU5-2A
 Diln Fac:
 1.000
 Analyzed:
 09/09/21

 Lab ID:
 449991-004
 Batch#:
 273582
 Prep:
 EPA 3546

 Matrix:
 Soil
 Sampled:
 08/31/21
 Analysis:
 EPA 8270C

Basis: dry Received: 09/02/21 Analyst: HQN

Moisture: 12% Prepared: 09/09/21

Analyte	Result	RL	Units
Carbazole	ND	190	ug/Kg
1-Methylnaphthalene	ND	190	ug/Kg
Pyridine	ND	190	ug/Kg
N-Nitrosodimethylamine	ND	190	ug/Kg
Phenol	ND	190	ug/Kg
Aniline	ND	190	ug/Kg
bis(2-Chloroethyl)ether	ND	900	ug/Kg
2-Chlorophenol	ND	190	ug/Kg
1,3-Dichlorobenzene	ND	190	ug/Kg
1,4-Dichlorobenzene	ND	190	ug/Kg
Benzyl alcohol	ND	190	ug/Kg
1,2-Dichlorobenzene	ND	190	ug/Kg
2-Methylphenol	ND	190	ug/Kg
bis(2-Chloroisopropyl) ether	ND	190	ug/Kg
3-,4-Methylphenol	ND	300	ug/Kg
N-Nitroso-di-n-propylamine	ND	190	ug/Kg
Hexachloroethane	ND	190	ug/Kg
Nitrobenzene	ND	900	ug/Kg
Isophorone	ND	190	ug/Kg
2-Nitrophenol	ND	190	ug/Kg
2,4-Dimethylphenol	ND	190	ug/Kg
Benzoic acid	ND	900	ug/Kg
bis(2-Chloroethoxy)methane	ND	190	ug/Kg
2,4-Dichlorophenol	ND	190	ug/Kg
1,2,4-Trichlorobenzene	ND	190	ug/Kg
Naphthalene	ND	190	ug/Kg
4-Chloroaniline	ND	190	ug/Kg
Hexachlorobutadiene	ND	190	ug/Kg
4-Chloro-3-methylphenol	ND	190	ug/Kg
2-Methylnaphthalene	ND	190	ug/Kg
Hexachlorocyclopentadiene	ND	900	ug/Kg
2,4,6-Trichlorophenol	ND	190	ug/Kg
2,4,5-Trichlorophenol	ND	190	ug/Kg
2-Chloronaphthalene	ND	190	ug/Kg
2-Nitroaniline	ND	190	ug/Kg
Dimethylphthalate	ND	190	ug/Kg
Acenaphthylene	ND	190	ug/Kg
2,6-Dinitrotoluene	ND ND	190	ug/Kg
3-Nitroaniline	ND ND	190	ug/Kg
Acenaphthene	ND ND	190	ug/Kg ug/Kg

Lab #: 449991Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	900	ug/Kg
4-Nitrophenol	ND	190	ug/Kg
Dibenzofuran	ND	190	ug/Kg
2,4-Dinitrotoluene	ND	190	ug/Kg
Diethylphthalate	ND	190	ug/Kg
Fluorene	ND	190	ug/Kg
4-Chlorophenyl-phenylether	ND	190	ug/Kg
4-Nitroaniline	ND	190	ug/Kg
4,6-Dinitro-2-methylphenol	ND	190	ug/Kg
N-Nitrosodiphenylamine	ND	190	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	190	ug/Kg
4-Bromophenyl-phenylether	ND	190	ug/Kg
Hexachlorobenzene	ND	190	ug/Kg
Pentachlorophenol	ND	900	ug/Kg
Phenanthrene	ND	190	ug/Kg
Anthracene	ND	190	ug/Kg
Di-n-butylphthalate	ND	190	ug/Kg
Fluoranthene	ND	190	ug/Kg
Benzidine	ND	900	ug/Kg
Pyrene	ND	190	ug/Kg
Butylbenzylphthalate	ND	190	ug/Kg
3,3'-Dichlorobenzidine	ND	900	ug/Kg
Benzo(a)anthracene	ND	190	ug/Kg
Chrysene	ND	190	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	190	ug/Kg
Di-n-octylphthalate	ND	190	ug/Kg
Benzo(b)fluoranthene	ND	190	ug/Kg
Benzo(k)fluoranthene	ND	190	ug/Kg
Benzo(a)pyrene	ND	190	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	190	ug/Kg
Dibenz(a,h)anthracene	ND	190	ug/Kg
Benzo(g,h,i)perylene	ND	190	ug/Kg

Surrogate	%REC	Limits	
2-Fluorophenol	44	29-120	
Phenol-d6	50	30-120	
2,4,6-Tribromophenol	53	32-120	
Nitrobenzene-d5	57	33-120	
2-Fluorobiphenyl	58	39-120	
Terphenyl-d14	66	44-125	

Legend

ND: Not Detected

RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU3-1A **Diln Fac:** 2.000 **Analyzed:** 09/09/21 **Lab ID:** 449991-005 Batch#: 273582 **Prep:** EPA 3546 Matrix: Soil Analysis: EPA 8270C **Sampled:** 08/31/21

Basis: dry **Received:** 09/02/21 Analyst: HQN

Moisture: 13% **Prepared:** 09/09/21

Analyte	Result	RL	Units
Carbazole	ND	380	ug/Kg
1-Methylnaphthalene	ND	380	ug/Kg
Pyridine	ND	380	ug/Kg
N-Nitrosodimethylamine	ND	380	ug/Kg
Phenol	ND	380	ug/Kg
Aniline	ND	380	ug/Kg
ois(2-Chloroethyl)ether	ND	1,800	ug/Kg
2-Chlorophenol	ND	380	ug/Kg
1,3-Dichlorobenzene	ND	380	ug/Kg
1,4-Dichlorobenzene	ND	380	ug/Kg
Benzyl alcohol	ND	380	ug/Kg
1,2-Dichlorobenzene	ND	380	ug/Kg
2-Methylphenol	ND	380	ug/Kg
bis(2-Chloroisopropyl) ether	ND	380	ug/Kg
3-,4-Methylphenol	ND	610	ug/Kg
N-Nitroso-di-n-propylamine	ND	380	ug/Kg
Hexachloroethane	ND	380	ug/Kg
Nitrobenzene	ND	1,800	ug/Kg
sophorone	ND	380	ug/Kg
2-Nitrophenol	ND	380	ug/Kg
2,4-Dimethylphenol	ND	380	ug/Kg
Benzoic acid	ND	1,800	ug/Kg
pis(2-Chloroethoxy)methane	ND	380	ug/Kg
2,4-Dichlorophenol	ND	380	ug/Kg
1,2,4-Trichlorobenzene	ND	380	ug/Kg
Naphthalene	ND	380	ug/Kg
4-Chloroaniline	ND	380	ug/Kg
Hexachlorobutadiene	ND	380	ug/Kg
4-Chloro-3-methylphenol	ND	380	ug/Kg
2-Methylnaphthalene	ND	380	ug/Kg
Hexachlorocyclopentadiene	ND	1,800	ug/Kg
2,4,6-Trichlorophenol	ND	380	ug/Kg
2,4,5-Trichlorophenol	ND	380	ug/Kg
2-Chloronaphthalene	ND	380	ug/Kg
2-Nitroaniline	ND	380	ug/Kg
Dimethylphthalate	ND	380	ug/Kg
Acenaphthylene	ND	380	ug/Kg
2,6-Dinitrotoluene	ND	380	ug/Kg
3-Nitroaniline	ND	380	ug/Kg
Acenaphthene	ND	380	ug/Kg ug/Kg

Lab #: 449991Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	1,800	ug/Kg
4-Nitrophenol	ND	380	ug/Kg
Dibenzofuran	ND	380	ug/Kg
2,4-Dinitrotoluene	ND	380	ug/Kg
Diethylphthalate	ND	380	ug/Kg
Fluorene	ND	380	ug/Kg
4-Chlorophenyl-phenylether	ND	380	ug/Kg
4-Nitroaniline	ND	380	ug/Kg
4,6-Dinitro-2-methylphenol	ND	380	ug/Kg
N-Nitrosodiphenylamine	ND	380	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	380	ug/Kg
4-Bromophenyl-phenylether	ND	380	ug/Kg
Hexachlorobenzene	ND	380	ug/Kg
Pentachlorophenol	ND	1,800	ug/Kg
Phenanthrene	ND	380	ug/Kg
Anthracene	ND	380	ug/Kg
Di-n-butylphthalate	ND	380	ug/Kg
Fluoranthene	ND	380	ug/Kg
Benzidine	ND	1,800	ug/Kg
Pyrene	ND	380	ug/Kg
Butylbenzylphthalate	ND	380	ug/Kg
3,3'-Dichlorobenzidine	ND	1,800	ug/Kg
Benzo(a)anthracene	ND	380	ug/Kg
Chrysene	ND	380	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	380	ug/Kg
Di-n-octylphthalate	ND	380	ug/Kg
Benzo(b)fluoranthene	ND	380	ug/Kg
Benzo(k)fluoranthene	ND	380	ug/Kg
Benzo(a)pyrene	ND	380	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	380	ug/Kg
Dibenz(a,h)anthracene	ND	380	ug/Kg
Benzo(g,h,i)perylene	ND	380	ug/Kg
Surrogate	%REC	Limits	
2-Fluorophenol	46	29-1	20
Phenol-d6	52	30-1	20
2 4 6-Tribromophenol	61	32-1	20

Surrogate	%REC	Limits
2-Fluorophenol	46	29-120
Phenol-d6	52	30-120
2,4,6-Tribromophenol	61	32-120
Nitrobenzene-d5	55	33-120
2-Fluorobiphenyl	55	39-120
Terphenyl-d14	64	44-125

Legend

ND: Not Detected

RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU3-2A **Diln Fac:** 2.000 **Analyzed:** 09/09/21 **Prep:** EPA 3546 **Lab ID:** 449991-006 Batch#: 273582 Analysis: EPA 8270C Matrix: Soil **Sampled:** 08/31/21

Basis: dry **Received:** 09/02/21 Analyst: HQN

Moisture: 10% Prepared: 09/09/21

Moisture: 10%	Prepared: 09/09/21		11
Analyte	Result	RL	Units
Carbazole	ND	370	ug/Kg
1-Methylnaphthalene	ND	370	ug/Kg
Pyridine	ND	370	ug/Kg
N-Nitrosodimethylamine	ND	370	ug/Kg
Phenol	ND	370	ug/Kg
Aniline	ND	370	ug/Kg
bis(2-Chloroethyl)ether	ND	1,800	ug/Kg
2-Chlorophenol	ND	370	ug/Kg
1,3-Dichlorobenzene	ND	370	ug/Kg
1,4-Dichlorobenzene	ND	370	ug/Kg
Benzyl alcohol	ND	370	ug/Kg
1,2-Dichlorobenzene	ND	370	ug/Kg
2-Methylphenol	ND	370	ug/Kg
bis(2-Chloroisopropyl) ether	ND	370	ug/Kg
3-,4-Methylphenol	ND	590	ug/Kg
N-Nitroso-di-n-propylamine	ND	370	ug/Kg
Hexachloroethane	ND	370	ug/Kg
Nitrobenzene	ND	1,800	ug/Kg
Isophorone	ND	370	ug/Kg
2-Nitrophenol	ND	370	ug/Kg
2,4-Dimethylphenol	ND	370	ug/Kg
Benzoic acid	ND	1,800	ug/Kg
ois(2-Chloroethoxy)methane	ND	370	ug/Kg
2,4-Dichlorophenol	ND	370	ug/Kg
1,2,4-Trichlorobenzene	ND	370	ug/Kg
Naphthalene	ND	370	ug/Kg
4-Chloroaniline	ND	370	ug/Kg
Hexachlorobutadiene	ND	370	ug/Kg
4-Chloro-3-methylphenol	ND	370	ug/Kg
2-Methylnaphthalene	ND	370	ug/Kg
Hexachlorocyclopentadiene	ND	1,800	ug/Kg
2,4,6-Trichlorophenol	ND	370	ug/Kg
2,4,5-Trichlorophenol	ND	370	ug/Kg
2-Chloronaphthalene	ND	370	ug/Kg
2-Nitroaniline	ND	370	ug/Kg
Dimethylphthalate	ND	370	ug/Kg
Acenaphthylene	ND	370	ug/Kg
2,6-Dinitrotoluene	ND	370	ug/Kg
3-Nitroaniline	ND	370	ug/Kg
Acenaphthene	ND	370	ug/Kg

Lab #: 449991Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
2,4-Dinitrophenol	ND	1,800	ug/Kg
4-Nitrophenol	ND	370	ug/Kg
Dibenzofuran	ND	370	ug/Kg
2,4-Dinitrotoluene	ND	370	ug/Kg
Diethylphthalate	ND	370	ug/Kg
Fluorene	ND	370	ug/Kg
4-Chlorophenyl-phenylether	ND	370	ug/Kg
4-Nitroaniline	ND	370	ug/Kg
4,6-Dinitro-2-methylphenol	ND	370	ug/Kg
N-Nitrosodiphenylamine	ND	370	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	370	ug/Kg
4-Bromophenyl-phenylether	ND	370	ug/Kg
Hexachlorobenzene	ND	370	ug/Kg
Pentachlorophenol	ND	1,800	ug/Kg
Phenanthrene	ND	370	ug/Kg
Anthracene	ND	370	ug/Kg
Di-n-butylphthalate	ND	370	ug/Kg
Fluoranthene	ND	370	ug/Kg
Benzidine	ND	1,800	ug/Kg
Pyrene	ND	370	ug/Kg
Butylbenzylphthalate	ND	370	ug/Kg
3,3'-Dichlorobenzidine	ND	1,800	ug/Kg
Benzo(a)anthracene	ND	370	ug/Kg
Chrysene	ND	370	ug/Kg
bis(2-Ethylhexyl)phthalate	ND	370	ug/Kg
Di-n-octylphthalate	ND	370	ug/Kg
Benzo(b)fluoranthene	ND	370	ug/Kg
Benzo(k)fluoranthene	ND	370	ug/Kg
Benzo(a)pyrene	ND	370	ug/Kg
Indeno(1,2,3-cd)pyrene	ND	370	ug/Kg
Dibenz(a,h)anthracene	ND	370	ug/Kg
Benzo(g,h,i)perylene	ND	370	ug/Kg
Surrogate	%REC	Limi	ts
2-Fluorophenol	41	29-120	
Phenol-d6	49	30-1	20

Surrogate	%REC	Limits
2-Fluorophenol	41	29-120
Phenol-d6	49	30-120
2,4,6-Tribromophenol	51	32-120
Nitrobenzene-d5	56	33-120
2-Fluorobiphenyl	60	39-120
Terphenyl-d14	69	44-125

Legend

ND: Not Detected

RL: Reporting Limit

Lab #: 449991 **Project#:** 3048_2

Location: AQS Client: Myounghee Noh & Associates

Type: BLANK Analysis: EPA 8270C Batch#: 273582

Lab ID: QC942747 Analyst: HQN **Prepared:** 09/09/21

Analyzed: 09/09/21 Matrix: Soil **Diln Fac:** 1.000 **Prep:** EPA 3546

Analyte	Result	RL	Units
Carbazole	ND	170	ug/Kg
1-Methylnaphthalene	ND	170	ug/Kg
Pyridine	ND	170	ug/Kg
N-Nitrosodimethylamine	ND	170	ug/Kg
Phenol	ND	170	ug/Kg
Aniline	ND	170	ug/Kg
bis(2-Chloroethyl)ether	ND	800	ug/Kg
2-Chlorophenol	ND	170	ug/Kg
1,3-Dichlorobenzene	ND	170	ug/Kg
1,4-Dichlorobenzene	ND	170	ug/Kg
Benzyl alcohol	ND	170	ug/Kg
1,2-Dichlorobenzene	ND	170	ug/Kg
2-Methylphenol	ND	170	ug/Kg
bis(2-Chloroisopropyl) ether	ND	170	ug/Kg
3-,4-Methylphenol	ND	270	ug/Kg
N-Nitroso-di-n-propylamine	ND	170	ug/Kg
Hexachloroethane	ND	170	ug/Kg
Nitrobenzene	ND	800	ug/Kg
Isophorone	ND	170	ug/Kg
2-Nitrophenol	ND	170	ug/Kg
2,4-Dimethylphenol	ND	170	ug/Kg
Benzoic acid	ND	800	ug/Kg
bis(2-Chloroethoxy)methane	ND	170	ug/Kg
2,4-Dichlorophenol	ND	170	ug/Kg
1,2,4-Trichlorobenzene	ND	170	ug/Kg
Naphthalene	ND	170	ug/Kg
4-Chloroaniline	ND	170	ug/Kg
Hexachlorobutadiene	ND	170	ug/Kg
4-Chloro-3-methylphenol	ND	170	ug/Kg
2-Methylnaphthalene	ND	170	ug/Kg
Hexachlorocyclopentadiene	ND	800	ug/Kg
2,4,6-Trichlorophenol	ND	170	ug/Kg
2,4,5-Trichlorophenol	ND	170	ug/Kg
2-Chloronaphthalene	ND	170	ug/Kg
2-Nitroaniline	ND	170	ug/Kg
Dimethylphthalate	ND	170	ug/Kg
Acenaphthylene	ND	170	ug/Kg
2,6-Dinitrotoluene	ND	170	ug/Kg
3-Nitroaniline	ND	170	ug/Kg
Acenaphthene	ND	170	ug/Kg
2,4-Dinitrophenol	ND	800	ug/Kg

Lab #: 449991Project#: 3048_2Client: Myounghee Noh & AssociatesLocation: AQS

Analyte	Result	RL	Units
4-Nitrophenol	ND	170	ug/Kg
Dibenzofuran	ND	170	ug/Kg
2,4-Dinitrotoluene	ND	170	ug/Kg
Diethylphthalate	ND	170	ug/Kg
Fluorene	ND	170	ug/Kg
4-Chlorophenyl-phenylether	ND	170	ug/Kg
4-Nitroaniline	ND	170	ug/Kg
4,6-Dinitro-2-methylphenol	ND	170	ug/Kg
N-Nitrosodiphenylamine	ND	170	ug/Kg
1,2-diphenylhydrazine (as azobenzene)	ND	170	ug/Kg
4-Bromophenyl-phenylether	ND	170	ug/Kg
Hexachlorobenzene	ND	170	ug/Kg
Pentachlorophenol	ND	800	ug/Kg
Phenanthrene	ND	170	ug/Kg
Anthracene	ND	170	ug/Kg
Di-n-butylphthalate	ND	170	ug/Kg
Fluoranthene	ND	170	ug/Kg
Benzidine	ND	800	ug/Kg
Pyrene	ND	170	ug/Kg
Butylbenzylphthalate	ND	170	ug/Kg
3,3'-Dichlorobenzidine	ND	800	ug/Kg
Benzo(a)anthracene	ND	170	ug/Kg
Chrysene	ND	170	ug/Kg
pis(2-Ethylhexyl)phthalate	ND	170	ug/Kg
Di-n-octylphthalate	ND	170	ug/Kg
Benzo(b)fluoranthene	ND	170	ug/Kg
Benzo(k)fluoranthene	ND	170	ug/Kg
Benzo(a)pyrene	ND	170	ug/Kg
ndeno(1,2,3-cd)pyrene	ND	170	ug/Kg
Dibenz(a,h)anthracene	ND	170	ug/Kg
Benzo(g,h,i)perylene	ND	170	ug/Kg

Surrogate	%REC	Limits
2-Fluorophenol	80	29-120
Phenol-d6	85	30-120
2,4,6-Tribromophenol	85	32-120
Nitrobenzene-d5	82	33-120
2-Fluorobiphenyl	80	39-120
Terphenyl-d14	87	44-125

Legend

ND: Not Detected

RL: Reporting Limit

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates

Location: AQS Analysis: EPA 8270C

Type: BS Lab ID: QC942748

Prepared: 09/09/21

Batch#: 273582

Analyst: HQN

Matrix: Soil

Analyzed: 09/09/21

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units
Phenol	1,333	1,144	86	42-120	ug/Kg
2-Chlorophenol	1,333	1,092	82	41-120	ug/Kg
1,4-Dichlorobenzene	1,333	1,101	83	36-120	ug/Kg
3-,4-Methylphenol	1,333	1,129	85	42-120	ug/Kg
N-Nitroso-di-n-propylamine	1,333	1,082	81	43-121	ug/Kg
2,4-Dimethylphenol	1,333	1,025	77	25-120	ug/Kg
1,2,4-Trichlorobenzene	1,333	1,088	82	38-120	ug/Kg
4-Chloro-3-methylphenol	1,333	1,100	83	40-125	ug/Kg
2,4,5-Trichlorophenol	1,333	1,142	86	40-124	ug/Kg
Acenaphthene	1,333	1,035	78	35-126	ug/Kg
4-Nitrophenol	1,333	1,163	87	24-128	ug/Kg
2,4-Dinitrotoluene	1,333	1,105	83	40-131	ug/Kg
Pentachlorophenol	1,333	929.7	70	35-120	ug/Kg
Pyrene	1,333	1,062	80	37-135	ug/Kg
Chrysene	1,333	1,070	80	38-132	ug/Kg
Benzo(b)fluoranthene	1,333	1,080	81	38-135	ug/Kg

Surrogate	%REC	Limits
2-Fluorophenol	85	29-120
Phenol-d6	86	30-120
2,4,6-Tribromophenol	86	32-120
Nitrobenzene-d5	85	33-120
2-Fluorobiphenyl	81	39-120
Terphenyl-d14	84	44-125

Project#: 3048_2 Lab #: 449991

Client: Myounghee Noh & Associates

Analysis: EPA 8270C Batch#: 273582

Location: AQS

Type: BSD Analyst: HQN Lab ID: QC942749 **Prepared:** 09/09/21

Analyzed: 09/09/21 Matrix: Soil **Diln Fac:** 1.000 **Prep:** EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Phenol	1,333	1,022	77	42-120	ug/Kg	11	20
2-Chlorophenol	1,333	960.4	72	41-120	ug/Kg	13	20
1,4-Dichlorobenzene	1,333	1,001	75	36-120	ug/Kg	10	20
3-,4-Methylphenol	1,333	1,040	78	42-120	ug/Kg	8	20
N-Nitroso-di-n-propylamine	1,333	969.8	73	43-121	ug/Kg	11	20
2,4-Dimethylphenol	1,333	922.7	69	25-120	ug/Kg	10	20
1,2,4-Trichlorobenzene	1,333	981.3	74	38-120	ug/Kg	10	20
4-Chloro-3-methylphenol	1,333	1,014	76	40-125	ug/Kg	8	20
2,4,5-Trichlorophenol	1,333	1,061	80	40-124	ug/Kg	7	20
Acenaphthene	1,333	949.9	71	35-126	ug/Kg	9	20
4-Nitrophenol	1,333	1,027	77	24-128	ug/Kg	12	20
2,4-Dinitrotoluene	1,333	1,046	78	40-131	ug/Kg	5	20
Pentachlorophenol	1,333	844.7	63	35-120	ug/Kg	10	20
Pyrene	1,333	966.7	73	37-135	ug/Kg	9	20
Chrysene	1,333	983.2	74	38-132	ug/Kg	8	20
Benzo(b)fluoranthene	1,333	999.2	75	38-135	ug/Kg	8	20

Surrogate	%REC	Limits
2-Fluorophenol	75	29-120
Phenol-d6	80	30-120
2,4,6-Tribromophenol	76	32-120
Nitrobenzene-d5	77	33-120
2-Fluorobiphenyl	72	39-120
Terphenyl-d14	76	44-125

Legend

RPD: Relative Percent Difference

Project#: 3048_2 Lab #: 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU4-1A **Prep:** EPA 3546 Batch#: 273602

Lab ID: 449991-001 Sampled: 08/30/21 Analysis: EPA 8081A Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21 **Diln Fac: 10.00 Analyzed:** 09/10/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REG	;	Limits
TCMX	DO)	23-120
		_	

DO 24-120 Decachlorobiphenyl

Legend DO: Diluted Out ND: Not Detected RL: Reporting Limit

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU4-2A
 Batch#:
 273602
 Prep:
 EPA 3546

 Lab ID:
 449991-002
 Sampled:
 08/30/21
 Analysis:
 EPA 8081A

Matrix: Soil Received: 09/02/21 Analyst: TJW

 Basis: air dried
 Prepared: 09/09/21

 Diln Fac: 10.00
 Analyzed: 09/10/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REC	,	Limits
TCMX	DC)	23-120
Decachlorobiphenyl	DC)	24-120

Legend

DO: Diluted Out

ND: Not Detected

RL: Reporting Limit

Project#: 3048_2 Lab #: 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU5-1A **Prep:** EPA 3546 Batch#: 273602

Lab ID: 449991-003 **Sampled:** 08/31/21 Analysis: EPA 8081A Matrix: Soil **Received:** 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21 **Diln Fac: 10.00 Analyzed:** 09/10/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REC	2	Limits
TCMX	DO)	23-120
December 2 him be a suit	D/	`	04.400

Surrogate	%REC	Limits
TCMX	DO	23-120
Decachlorobinhenyl	DO	24-120

Legend DO: Diluted Out ND: Not Detected RL: Reporting Limit

Project#: 3048_2 Lab #: 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU5-2A **Prep:** EPA 3546 Batch#: 273602 Lab ID: 449991-004 **Sampled:** 08/31/21 Analysis: EPA 8081A

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21 **Diln Fac: 10.00 Analyzed:** 09/10/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REG	;	Limits
TCMX	DO)	23-120
		_	

DO 24-120 Decachlorobiphenyl

Legend DO: Diluted Out ND: Not Detected RL: Reporting Limit

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

 Field ID:
 3048-DU3-1A
 Batch#:
 273602
 Prep:
 EPA 3546

 Lab ID:
 449991-005
 Sampled:
 08/31/21
 Analysis:
 EPA 8081A

Matrix: Soil Received: 09/02/21 Analyst: TJW

 Basis: air dried
 Prepared: 09/09/21

 Diln Fac: 10.00
 Analyzed: 09/10/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REC		Limits
TCMX	DC		23-120
Decachlorobiphenyl	DC)	24-120

Decachlorobiphenyl

Legend

DO: Diluted Out

ND: Not Detected
RL: Reporting Limit

Project#: 3048_2 Lab #: 449991

Client: Myounghee Noh & Associates **Location:** AQS

Field ID: 3048-DU3-2A **Prep:** EPA 3546 Batch#: 273602 Lab ID: 449991-006 **Sampled:** 08/31/21 Analysis: EPA 8081A

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21 **Diln Fac: 10.00 Analyzed:** 09/10/21

Analyte	Result	RL	Units
alpha-BHC	ND	17	ug/Kg
beta-BHC	ND	17	ug/Kg
gamma-BHC	ND	17	ug/Kg
delta-BHC	ND	17	ug/Kg
Heptachlor	ND	17	ug/Kg
Aldrin	ND	17	ug/Kg
Heptachlor epoxide	ND	17	ug/Kg
Endosulfan I	ND	17	ug/Kg
Dieldrin	ND	17	ug/Kg
4,4'-DDE	ND	17	ug/Kg
Endrin	ND	17	ug/Kg
Endosulfan II	ND	17	ug/Kg
Endosulfan sulfate	ND	17	ug/Kg
4,4'-DDD	ND	17	ug/Kg
Endrin aldehyde	ND	17	ug/Kg
Endrin ketone	ND	17	ug/Kg
4,4'-DDT	ND	17	ug/Kg
Methoxychlor	ND	33	ug/Kg
Toxaphene	ND	330	ug/Kg
Chlordane (Technical)	ND	170	ug/Kg
Surrogate	%REG	;	Limits
TCMX	DO)	23-120

DO 24-120 Decachlorobiphenyl

Legend DO: Diluted Out ND: Not Detected RL: Reporting Limit

Organochlorine Pesticides: Batch QC

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates

Type: BLANK Analysis: EPA 8081A Batch#: 273602

Location: AQS

Analyst: TJW Lab ID: QC942816 **Prepared:** 09/09/21

Matrix: Soil **Analyzed:** 09/10/21 **Diln Fac: 1.000 Prep:** EPA 3546

Analyte	Result	RL	Units
alpha-BHC	ND	1.7	ug/Kg
beta-BHC	ND	1.7	ug/Kg
gamma-BHC	ND	1.7	ug/Kg
delta-BHC	ND	1.7	ug/Kg
Heptachlor	ND	1.7	ug/Kg
Aldrin	ND	1.7	ug/Kg
Heptachlor epoxide	ND	1.7	ug/Kg
Endosulfan I	ND	1.7	ug/Kg
Dieldrin	ND	1.7	ug/Kg
4,4'-DDE	ND	1.7	ug/Kg
Endrin	ND	1.7	ug/Kg
Endosulfan II	ND	1.7	ug/Kg
Endosulfan sulfate	ND	1.7	ug/Kg
4,4'-DDD	ND	1.7	ug/Kg
Endrin aldehyde	ND	1.7	ug/Kg
Endrin ketone	ND	1.7	ug/Kg
4,4'-DDT	ND	1.7	ug/Kg
Methoxychlor	ND	3.3	ug/Kg
Toxaphene	ND	33	ug/Kg
Chlordane (Technical)	ND	17	ug/Kg
Surrogate	%REC	;	Limits
TCMX	93	1	23-120
D 11 1:1 1			04400

Decachlorobiphenyl 90 24-120

Legend ND: Not Detected RL: Reporting Limit

Organochlorine Pesticides: Batch QC

Lab #: 449991 **Project#:** 3048_2

Location: AQS Client: Myounghee Noh & Associates

Type: BS Analysis: EPA 8081A Batch#: 273602

Analyst: TJW **Lab ID:** QC942817 **Prepared:** 09/09/21

Matrix: Soil **Analyzed:** 09/10/21 **Diln Fac: 1.000 Prep:** EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units
alpha-BHC	16.67	16.94	102	22-129	ug/Kg
beta-BHC	16.67	16.85	101	28-125	ug/Kg
gamma-BHC	16.67	16.48	99	22-128	ug/Kg
delta-BHC	16.67	15.90	95	24-131	ug/Kg
Heptachlor	16.67	16.44	99	18-124	ug/Kg
Aldrin	16.67	14.86	89	23-120	ug/Kg
Heptachlor epoxide	16.67	15.47	93	26-120	ug/Kg
Endosulfan I	16.67	18.20	109	25-126	ug/Kg
Dieldrin	16.67	16.62	100	23-124	ug/Kg
4,4'-DDE	16.67	16.69	100	28-121	ug/Kg
Endrin	16.67	17.06	102	25-127	ug/Kg
Endosulfan II	16.67	16.40	98	29-121	ug/Kg
Endosulfan sulfate	16.67	15.19	91	30-121	ug/Kg
4,4'-DDD	16.67	14.54	87	26-120	ug/Kg
Endrin aldehyde	16.67	5.813	35	10-120	ug/Kg
Endrin ketone	16.67	14.90	89	28-125	ug/Kg
4,4'-DDT	16.67	12.90	77	22-125	ug/Kg
Methoxychlor	16.67	13.34	80	28-130	ug/Kg
Surrogate			%RE	C	Limits
TCMX			Ç	96	23-120
Decachlorobiphenyl			(92	24-120

Organochlorine Pesticides: Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BSD

Analysis: EPA 8081A

Lab ID: QC942818

Analyst: TJW

Matrix: Soil

Prepared: 09/09/21 **Analyzed:** 09/10/21

Batch#: 273602

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
alpha-BHC	16.67	13.43	81	22-129	ug/Kg	23 *	20
beta-BHC	16.67	13.46	81	28-125	ug/Kg	22 *	20
gamma-BHC	16.67	12.72	76	22-128	ug/Kg	26 *	20
delta-BHC	16.67	12.72	76	24-131	ug/Kg	22 *	20
Heptachlor	16.67	13.95	84	18-124	ug/Kg	16	20
Aldrin	16.67	12.50	75	23-120	ug/Kg	17	20
Heptachlor epoxide	16.67	12.38	74	26-120	ug/Kg	22 *	20
Endosulfan I	16.67	15.07	90	25-126	ug/Kg	19	20
Dieldrin	16.67	13.63	82	23-124	ug/Kg	20	20
4,4'-DDE	16.67	14.22	85	28-121	ug/Kg	16	20
Endrin	16.67	14.48	87	25-127	ug/Kg	16	20
Endosulfan II	16.67	13.28	80	29-121	ug/Kg	21 *	20
Endosulfan sulfate	16.67	10.78	65	30-121	ug/Kg	34 *	20
4,4'-DDD	16.67	11.48	69	26-120	ug/Kg	24 *	20
Endrin aldehyde	16.67	4.969	30	10-120	ug/Kg	16	20
Endrin ketone	16.67	12.48	75	28-125	ug/Kg	18	20
4,4'-DDT	16.67	12.51	75	22-125	ug/Kg	3	20
Methoxychlor	16.67	11.54	69	28-130	ug/Kg	14	20
Surrogate				%	REC	Limits	

Surrogate	%REC	Limits
TCMX	86	23-120
Decachlorobiphenyl	84	24-120

Legend

2 of 2

^{*:} Value is outside QC limits

RPD: Relative Percent Difference

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU4-1A **Diln Fac:** 5.000 **Analyzed:** 09/10/21

 Type:
 SAMPLE
 Batch#:
 273602
 Prep:
 EPA 3546

 Lab ID:
 449991-001
 Sampled:
 08/30/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorohinhenyl (PCR)		52	19-121

Decachlorobiphenyl (PCB) 52 19-121

 Field ID:
 3048-DU4-2A
 Diln Fac:
 5.000
 Analyzed:
 09/10/21

 Type:
 SAMPLE
 Batch#:
 273602
 Prep:
 EPA 3546

 Lab ID:
 449991-002
 Sampled:
 08/30/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		13 *	19-121

Project#: 3048_2 Lab #: 449991

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU5-1A **Analyzed:** 09/10/21 **Diln Fac:** 5.000

Type: SAMPLE Batch#: 273602 **Prep:** EPA 3546 **Lab ID:** 449991-003 **Sampled:** 08/31/21 Analysis: EPA 8082

Matrix: Soil **Received:** 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		32	19-121

Decachiorobiphenyl (PCB)

Field ID: 3048-DU5-2A **Diln Fac:** 5.000 **Analyzed:** 09/10/21 Type: SAMPLE Batch#: 273602 **Prep:** EPA 3546 **Lab ID:** 449991-004 Analysis: EPA 8082 **Sampled:** 08/31/21

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	130	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		64	19-121

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU3-1A **Diln Fac:** 5.000 **Analyzed:** 09/10/21

 Type:
 SAMPLE
 Batch#:
 273602
 Prep:
 EPA 3546

 Lab ID:
 449991-005
 Sampled:
 08/31/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		53	19-121

 Field ID:
 3048-DU3-2A
 Diln Fac:
 5.000
 Analyzed:
 09/10/21

 Type:
 SAMPLE
 Batch#:
 273602
 Prep:
 EPA 3546

 Lab ID:
 449991-006
 Sampled:
 08/31/21
 Analysis:
 EPA 8082

Matrix: Soil Received: 09/02/21 Analyst: TJW

Basis: air dried **Prepared:** 09/09/21

Analyte	Result	RL	Units
Aroclor-1016	ND	83	ug/Kg
Aroclor-1221	ND	83	ug/Kg
Aroclor-1232	ND	83	ug/Kg
Aroclor-1242	ND	83	ug/Kg
Aroclor-1248	ND	83	ug/Kg
Aroclor-1254	ND	83	ug/Kg
Aroclor-1260	ND	83	ug/Kg
Aroclor-1262	ND	83	ug/Kg
Aroclor-1268	ND	83	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		91	19-121

Project#: 3048_2 **Lab #:** 449991

Client: Myounghee Noh & Associates

Analysis: EPA 8082 Batch#: 273602

Location: AQS

Type: BLANK Analyst: TJW **Lab ID:** QC942816 **Prepared:** 09/09/21

Matrix: Soil **Analyzed:** 09/10/21 **Diln Fac: 1.000 Prep:** EPA 3546

Analyte	Result	RL	Units
Aroclor-1016	ND	17	ug/Kg
Aroclor-1221	ND	17	ug/Kg
Aroclor-1232	ND	17	ug/Kg
Aroclor-1242	ND	17	ug/Kg
Aroclor-1248	ND	17	ug/Kg
Aroclor-1254	ND	17	ug/Kg
Aroclor-1260	ND	17	ug/Kg
Aroclor-1262	ND	17	ug/Kg
Aroclor-1268	ND	17	ug/Kg
Surrogate		%REC	Limits
Decachlorobiphenyl (PCB)		87	19-121

Legend

*: Value is outside QC limits

ND: Not Detected RL: Reporting Limit

Polychlorinated Biphenyls (PCBs): Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BS **Batch#:** 273602

Analysis: EPA 8082

Analyst: TJW

Lab ID: QC942819

Prepared: 09/09/21

Matrix: Soil

Analyzed: 09/10/21

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units
Aroclor-1016	166.7	140.9	85	14-150	ug/Kg
Aroclor-1260	166.7	140.7	84	10-150	ug/Kg
Surrogate				%REC	Limits
Decachlorobiphenyl (PCB)				87	19-121

Type: BSD Batch#: 273602 Analysis: EPA 8082

Lab ID: QC942820

Prepared: 09/09/21

Analysis: EPA 8082 Analyst: TJW

Matrix: Soil

Analyzed: 09/10/21

u. 09/10/21

Diln Fac: 1.000

Prep: EPA 3546

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Aroclor-1016	166.7	153.3	92	14-150	ug/Kg	8	20
Aroclor-1260	166.7	150.3	90	10-150	ug/Kg	7	20
Surrogate					%REC	Limits	
Decachlorobiphenyl (PCB)					85	19-121	

Legend

RPD: Relative Percent Difference

Metals Analytical Report

Lab #: 449991 **Project#:** 3048_2

Received: 09/02/21

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU4-1A Matrix: Soil

Type: SAMPLE Diln Fac: 1.000

Type: SAMPLE **Diln Fac:** 1.000 **Lab ID:** 449991-001 **Sampled:** 08/30/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Prepared	Analyzed	Prep	Analysis	Analyst
Arsenic	4.7	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Barium	110	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Cadmium	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Chromium	200	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Lead	15	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Mercury	ND	0.17	mg/Kg	dry	13%	273498	09/07/21	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Silver	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW

Field ID: 3048-DU4-2A **Matrix:** Soil **Received:** 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000

 Lab ID:
 449991-002
 Sampled:
 08/30/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Prepared	Analyzed	Prep	Analysis	Analyst
Arsenic	3.6	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Barium	110	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Cadmium	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Chromium	180	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Lead	12	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Mercury	ND	0.18	mg/Kg	dry	13%	273498	09/07/21	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Silver	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW

Field ID: 3048-DU5-1A **Matrix:** Soil **Received:** 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000

 Lab ID:
 449991-003
 Sampled:
 08/31/21

Analyte	Result	RL I	Units	Basis	Moisture	Batch#	Prepared	Analyzed	Prep	Analysis	Analyst
Arsenic	2.2	0.50 n	ng/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Barium	64	0.50 n	ng/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Cadmium	ND	0.25 n	ng/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Chromium	170	0.50 n	ng/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Lead	11	0.50 n	ng/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Mercury	ND	0.18 n	ng/Kg	dry	15%	273498	09/07/21	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5 n	ng/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Silver	ND	0.25 n	na/Ka	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW

Metals Analytical Report

Lab #: 449991 Project#: 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: 3048-DU5-2A Matrix: Soil Received: 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000

 Lab ID:
 449991-004
 Sampled:
 08/31/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Prepared	Analyzed	Prep	Analysis	Analyst
Arsenic	5.5	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Barium	140	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Cadmium	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Chromium	170	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Lead	20	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Mercury	ND	0.17	mg/Kg	dry	12%	273498	09/07/21	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Silver	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW

Field ID: 3048-DU3-1A Matrix: Soil Received: 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000

 Lab ID:
 449991-005
 Sampled:
 08/31/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Prepared	Analyzed	Prep	Analysis	Analyst
Arsenic	2.4	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Barium	65	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Cadmium	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Chromium	170	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Lead	10	0.50	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Mercury	ND	0.16	mg/Kg	dry	13%	273498	09/07/21	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Silver	ND	0.25	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW

Field ID: 3048-DU3-2A **Matrix:** Soil **Received:** 09/02/21

 Type:
 SAMPLE
 Diln Fac:
 1.000

 Lab ID:
 449991-006
 Sampled:
 08/31/21

Analyte	Result	RL	Units	Basis	Moisture	Batch#	Prepared	Analyzed	Prep	Analysis	Analyst
Arsenic	2.8	0.50 r	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Barium	95	0.50 r	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Cadmium	ND	0.25 r	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Chromium	140	0.50 r	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Lead	13	0.50 r	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Mercury	ND	0.17 r	mg/Kg	dry	10%	273498	09/07/21	09/08/21	METHOD	EPA 7471A	TNN
Selenium	ND	1.5 r	mg/Kg	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW
Silver	ND	0.25 r	ma/Ka	air dried		273787	09/13/21	09/14/21	EPA 3050B	EPA 6010B	SBW

Metals Analytical Report

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Type: BLANK Batch#: 273498 Analysis: EPA 7471A

Location: AQS

Matrix:SoilAnalyzed:09/08/21Diln Fac:1.000Prep:METHOD

 Analyte
 Result
 RL
 Units

 Mercury
 ND
 0.14
 mg/Kg

Type: BLANK Batch#: 273787 Analysis: EPA 6010B

Lab ID: QC943347 Prepared: 09/13/21 Analyst: SBW

Matrix: Soil Analyzed: 09/14/21

Diln Fac: 1.000 Prep: EPA 3050B

Analyte	Result	RL	Units
Arsenic	ND	0.50	mg/Kg
Barium	ND	0.50	mg/Kg
Cadmium	ND	0.25	mg/Kg
Chromium	ND	0.50	mg/Kg
Lead	ND	0.50	mg/Kg
Selenium	ND	1.5	mg/Kg
Silver	ND	0.25	mg/Kg

Legend

ND: Not Detected

RL: Reporting Limit

Metals Analytical Report: Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Type: LCS Batch#: 273498 Analysis: EPA 7471A

Location: AQS

Matrix: Soil Analyzed: 09/08/21

Diln Fac: 1.000 Prep: METHOD

Analyte	Spiked	Result	%REC	Limits	Units
Mercury	0.8333	0.8302	100	80-120	mg/Kg

Metals Analytical Report: Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates Location: AQS

Field ID: ZZZZZZZZZ Basis: as received Prepared: 09/07/21

 Type:
 MS
 Diln Fac:
 1.000
 Analyzed:
 09/08/21

 MSS Lab ID:
 449994-001
 Batch#:
 273498
 Prep:
 METHOD

Matrix: Soil Received: 09/02/21 Analyst: TNN

 Analyte
 MSS Result
 Spiked
 Result
 %REC
 Limits
 Units

 Mercury
 <0.04587</td>
 0.9259
 0.9312
 101
 75-125
 mg/Kg

Field ID: ZZZZZZZZZ Basis: as received Prepared: 09/07/21

 Type:
 MSD
 Diln Fac:
 1.000
 Analyzed:
 09/08/21

 MSS Lab ID:
 449994-001
 Batch#:
 273498
 Prep:
 METHOD

Matrix: Soil Received: 09/02/21 Analyst: TNN

 Analyte
 Spiked
 Result
 %REC
 Limits
 Units
 RPD
 Lim

 Mercury
 0.9804
 1.008
 103
 75-125
 mg/Kg
 2
 20

Legend

RPD: Relative Percent Difference

Metals Analytical Report: Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Location: AQS

Type: BS **Batch#:** 273787

Analysis: EPA 6010B
Analyst: SBW

80-120

mg/Kg

Lab ID: QC943348

Prepared: 09/13/21 **Analyzed:** 09/14/21

Matrix: Soil

Diln Fac: 1.000

Prep: EPA 3050B

Analyte	Spiked	Result	%REC	Limits	Units
Arsenic	50.00	49.63	99	80-120	mg/Kg
Barium	50.00	50.39	101	80-120	mg/Kg
Cadmium	50.00	49.43	99	80-120	mg/Kg
Chromium	50.00	48.71	97	80-120	mg/Kg
Lead	50.00	50.33	101	80-120	mg/Kg
Selenium	50.00	42.96	86	80-120	mg/Kg

Type: BSD Batch#: 273787 Analysis: EPA 6010B

22.93

92

Matrix: Soil Analyzed: 09/14/21

Diln Fac: 1.000 Prep: EPA 3050B

25.00

Analyte	Spiked	Result	%REC	Limits	Units	RPD	Lim
Arsenic	50.00	50.71	101	80-120	mg/Kg	2	20
Barium	50.00	52.04	104	80-120	mg/Kg	3	20
Cadmium	50.00	50.62	101	80-120	mg/Kg	2	20
Chromium	50.00	49.91	100	80-120	mg/Kg	2	20
Lead	50.00	50.31	101	80-120	mg/Kg	0	20
Selenium	50.00	43.96	88	80-120	mg/Kg	2	20
Silver	25.00	23.35	93	80-120	mg/Kg	2	20

Legend

Silver

RPD: Relative Percent Difference

1 of 1

Moisture

Lab #: 449991 Project#: 3048_2
Client: Myounghee Noh & Associates Location: AQS

 Field ID: 3048-DU4-1A
 Batch#: 273386
 Prep: METHOD

Lab ID: 449991-001 Sampled: 08/30/21 Analysis: ASTM D2216

Matrix: Soil Received: 09/02/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/03/21

Analyte Result RL Units

Moisture, Percent 13 1 %

 Field ID:
 3048-DU4-2A
 Batch#:
 273386
 Prep:
 METHOD

 Lab ID:
 449991-002
 Sampled:
 08/30/21
 Analysis:
 ASTM D2216

Matrix: Soil Received: 09/02/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/03/21

Analyte Result RL Units

Moisture, Percent 13 1 %

 Field ID:
 3048-DU5-1A
 Batch#:
 273386
 Prep:
 METHOD

 Lab ID:
 449991-003
 Sampled:
 08/31/21
 Analysis:
 ASTM D2216

Matrix: Soil Received: 09/02/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/03/21

AnalyteResultRLUnitsMoisture, Percent151%

 Field ID:
 3048-DU5-2A
 Batch#:
 273386
 Prep:
 METHOD

 Lab ID:
 449991-004
 Sampled:
 08/31/21
 Analysis:
 ASTM D2216

Matrix: Soil Received: 09/02/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/03/21

Analyte Result RL Units

Moisture, Percent 12 1 %

 Field ID:
 3048-DU3-1A
 Batch#:
 273386
 Prep:
 METHOD

 Lab ID:
 449991-005
 Sampled:
 08/31/21
 Analysis:
 ASTM D2216

Matrix: Soil Received: 09/02/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/03/21

Analyte Result RL Units

Moisture, Percent 13 1 %

 Field ID:
 3048-DU3-2A
 Batch#:
 273386
 Prep:
 METHOD

 Lab ID:
 449991-006
 Sampled:
 08/31/21
 Analysis:
 ASTM D2216

Matrix: Soil Received: 09/02/21 Analyst: ECC

Diln Fac: 1.000 **Analyzed:** 09/03/21

Analyte Result RL Units

Moisture, Percent 10 1 %

Moisture

Project#: 3048_2 **Lab #:** 449991 Location: AQS Client: Myounghee Noh & Associates

RL: Reporting Limit

Moisture: Batch QC

Lab #: 449991 **Project#:** 3048_2

Client: Myounghee Noh & Associates

Field ID: ZZZZZZZZZZ Diln Fac: 1.000 Prep: METHOD

Type:SDUPBatch#:273386Analysis:ASTM D2216

Location: AQS

MSS Lab ID: 449994-001 Sampled: 09/01/21 Analyst: ECC Lab ID: QC942154 Received: 09/02/21

Matrix: Soil Analyzed: 09/03/21

 Analyte
 MSS Result
 Result
 RL
 Units
 RPD
 Lim

 Moisture, Percent
 2.011
 2.118
 1.000
 %
 5
 26

Legend

RL: Reporting Limit

RPD: Relative Percent Difference